387 research outputs found

    Fast approximation schemes for Boolean programming and scheduling problems related to positive convex Half-Product

    Get PDF
    We address a version of the Half-Product Problem and its restricted variant with a linear knapsack constraint. For these minimization problems of Boolean programming, we focus on the development of fully polynomial-time approximation schemes with running times that depend quadratically on the number of variables. Applications to various single machine scheduling problems are reported: minimizing the total weighted flow time with controllable processing times, minimizing the makespan with controllable release dates, minimizing the total weighted flow time for two models of scheduling with rejection

    A fast FPTAS for single machine scheduling problem of minimizing total weighted earliness and tardiness about a large common due date

    Get PDF
    We address the single machine scheduling problem to minimize the total weighted earliness and tardiness about a nonrestrictive common due date. This is a basic problem with applications to the just-in-time manufacturing. The problem is linked to a Boolean programming problem with a quadratic objective function, known as the half-product. An approach to developing a fast fully polynomial-time approximation scheme (FPTAS) for the problem is identified and implemented. The running time matches the best known running time for an FPTAS for minimizing a half-product with no additive constan
    corecore