5,279 research outputs found

    Capteur d’hydrogĂšne mos et mĂ©thode d’intĂ©gration Ă  une technologie de transistor FDSOI

    Get PDF
    Abstract: hydrogen can be used as an energy carrier (storage) by the renewable energy industry as well as the automotive industry (fuel cell). Other industries already use hydrogen such, food processing and petroleum refineries. Hydrogen is odorless, transparent, and has a lower explosive limit of 4 %. Reliable, fast sensor are essential tools for a hydrogen safe environment. The work of this thesis provides a semiconductor-based hydrogen sensing solution. A MOS capacitor using a CMOS compatible novel Pt/Ti/ALD-Al2O3/p-Si stack. The Pt/Ti/Al2O3 sensing interface materials thicknesses are 100/5/38 nm respectively. The device can detect very low concentrations < 20 ppm. Furthermore, for a concentration of 500 ppm the response time is 56 s. the impact of testing conditions such temperature, and total gas flow have been studied. Results show that at 60℃ the device does not respond to hydrogen. And at 80℃ or higher the sensing response time is significantly reduced with increasing temperature. Furthermore, the total gas flow has an impact on the device response time and shows that a portion of the time response delay can be attributed to the chamber’s volume. Moreover, a heterogeneous integration method has been designed and presented. The latter represents a great tool for a flexible prototyping of sensors using FDSOI transistor technology. The integration has been simulated and results show promising results. The capacitive coupling feature in the FDSOI between the front and back gate is used to amplify the potential variation at the front gate. For instance, a 0.3 V hydrogen induced dipole potential can be amplified by a factor of 14 x.Le travail de cette thĂšse comprend la conception et la fabrication d’une technologie de capteur d’hydrogĂšne basĂ©e sur une structure MOS. La structure est composĂ©e d’un empilement de Pt/Ti/Al2O3/p-Si. Les Ă©paisseurs des matĂ©riaux utilisĂ©s pour la fabrication sont 100/5/38 nm (Pt/Ti/Al2O3) sur un substrat de silicium. Le capteur est capable de dĂ©tecter de trĂšs faibles concentrations < 20 ppm. De plus, pour une concentration de 500 ppm, le temps de rĂ©ponse est 56 s. L’impact de plusieurs conditions de test, comprenant la tempĂ©rature et le dĂ©bit total dans la chambre a Ă©tĂ© Ă©valuĂ©. Les rĂ©sultats montrent qu’à 60℃ le dispositive n’est pas capable de dĂ©tecter la prĂ©sence d’hydrogĂšne. Cependant, Ă  partir d’une tempĂ©rature de 80℃, la rĂ©ponse est trĂšs importante et le temps diminue pour encore des tempĂ©ratures plus Ă©levĂ©es. Le dĂ©bit total dans la chambre a aussi dĂ©montrĂ© un impact sur le temps de rĂ©ponse du capteur. Ce qui est aussi reliĂ© au volume de la chambre. Une intĂ©gration hĂ©tĂ©rogĂšne ensuite a Ă©tĂ© conçue et prĂ©sentĂ©e. Cette derniĂšre est un outil flexible pour le prototypage avec des technologies de transistor FDSOI. L’intĂ©gration des deux dispositifs a Ă©tĂ© effectuĂ©e et montre de rĂ©sultats prometteurs. Le couplage capacitif entre la grille avant et la grille arriĂšre du transistor FDSOI permet d’amplifier le signal du capteur. Par exemple, une variation de potentiel de 0.3 V peut ĂȘtre amplifier par un facteur de 14 x, donc 4.19 V

    Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging

    Get PDF
    Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed
    • 

    corecore