516 research outputs found

    On FHE without bootstrapping

    Get PDF
    We investigate the use of multivariate polynomials in constructing a fully homomorphic encryption. In this work we come up with two fully homomorphic schemes. First, we propose an IND-CPA secure symmetric key homomorphic encryption scheme using multivariate polynomial ring over finite fields. This scheme gives a method of constructing a CPA secure homomorphic encryption scheme from another symmetric deterministic CPA secure scheme. We base the security of the scheme on pseudo random functions and also construct an information theoretically secure variant, rather than basing security on hard problems like Ideal Membership and Gröbner basis as seen in most polly cracker based schemes which also use multivariate polynomial rings. This scheme is not compact but has many interesting properties- It can evaluate circuits of arbitrary depths without bootstrapping for bounded length input to the algorithm. Second what follows naturally is, an attempt to make it compact we propose some changes to the scheme and analyse the scheme in (Albrecht et. al. Asiacrypt-2011). We try to make it compact but fail and realise that this could give us a Multi Party Computation protocol. Realising that polynomials leads us to non compact schemes we move propose schemes based on matrices. We then propose our candidate for a fully homomorphic encryption without bootstrapping

    Ring Learning With Errors: A crossroads between postquantum cryptography, machine learning and number theory

    Get PDF
    The present survey reports on the state of the art of the different cryptographic functionalities built upon the ring learning with errors problem and its interplay with several classical problems in algebraic number theory. The survey is based to a certain extent on an invited course given by the author at the Basque Center for Applied Mathematics in September 2018.Comment: arXiv admin note: text overlap with arXiv:1508.01375 by other authors/ comment of the author: quotation has been added to Theorem 5.

    Lattice-Based proof of a shuffle

    Get PDF
    In this paper we present the first fully post-quantum proof of a shuffle for RLWE encryption schemes. Shuffles are commonly used to construct mixing networks (mix-nets), a key element to ensure anonymity in many applications such as electronic voting systems. They should preserve anonymity even against an attack using quantum computers in order to guarantee long-term privacy. The proof presented in this paper is built over RLWE commitments which are perfectly binding and computationally hiding under the RLWE assumption, thus achieving security in a post-quantum scenario. Furthermore we provide a new definition for a secure mixing node (mix-node) and prove that our construction satisfies this definition.Peer ReviewedPostprint (author's final draft

    Polly Cracker, revisited

    Get PDF
    • …
    corecore