29 research outputs found

    Fully leakage-resilient signatures revisited: Graceful degradation, noisy leakage, and construction in the bounded-retrieval model

    Get PDF
    We construct new leakage-resilient signature schemes. Our schemes remain unforgeable against an adversary leaking arbitrary (yet bounded) information on the entire state of the signer (sometimes known as fully leakage resilience), including the random coin tosses of the signing algorithm. The main feature of our constructions is that they offer a graceful degradation of security in situations where standard existential unforgeability is impossible

    Secure multi-party protocols under a modern lens

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 263-272).A secure multi-party computation (MPC) protocol for computing a function f allows a group of parties to jointly evaluate f over their private inputs, such that a computationally bounded adversary who corrupts a subset of the parties can not learn anything beyond the inputs of the corrupted parties and the output of the function f. General MPC completeness theorems in the 1980s showed that every efficiently computable function can be evaluated securely in this fashion [Yao86, GMW87, CCD87, BGW88] using the existence of cryptography. In the following decades, progress has been made toward making MPC protocols efficient enough to be deployed in real-world applications. However, recent technological developments have brought with them a slew of new challenges, from new security threats to a question of whether protocols can scale up with the demand of distributed computations on massive data. Before one can make effective use of MPC, these challenges must be addressed. In this thesis, we focus on two lines of research toward this goal: " Protocols resilient to side-channel attacks. We consider a strengthened adversarial model where, in addition to corrupting a subset of parties, the adversary may leak partial information on the secret states of honest parties during the protocol. In presence of such adversary, we first focus on preserving the correctness guarantees of MPC computations. We then proceed to address security guarantees, using cryptography. We provide two results: an MPC protocol whose security provably "degrades gracefully" with the amount of leakage information obtained by the adversary, and a second protocol which provides complete security assuming a (necessary) one-time preprocessing phase during which leakage cannot occur. * Protocols with scalable communication requirements. We devise MPC protocols with communication locality: namely, each party only needs to communicate with a small (polylog) number of dynamically chosen parties. Our techniques use digital signatures and extend particularly well to the case when the function f is a sublinear algorithm whose execution depends on o(n) of the n parties' inputs.by Elette Chantae Boyle.Ph.D

    A Survey of Leakage-Resilient Cryptography

    Get PDF
    In the past 15 years, cryptography has made considerable progress in expanding the adversarial attack model to cover side-channel attacks, and has built schemes to provably defend against some of them. This survey covers the main models and results in this so-called leakage-resilient cryptography

    Protecting Cryptographic Keys against Continual Leakage

    Get PDF
    Side-channel attacks have often proven to have a devastating effect on the security of cryptographic schemes. In this paper, we address the problem of storing cryptographic keys and computing on them in a manner that preserves security even when the adversary is able to obtain information leakage during the computation on the key. Using the recently achieved fully homomorphic encryption, we show how to encapsulate a key and repeatedly evaluate arbitrary functions on it so that no adversary can gain any useful information from a large class of side-channel attacks. We work in the model of Micali and Reyzin, assuming that only the active part of memory during computation leaks information. Similarly to previous works, our construc-tion makes use of a single “leak-free ” hardware token that samples from a globally-fixed distribution that does not depend on the key. Our construction is the first general compiler to achieve resilience against polytime leakage functions without performing any leak-free computation on the underlying secret key. Furthermore, the amount of computation our construction must perform does not grow with the amount of leakage the adver-sary is able to obtain; instead, it suffices to make a stronger assumption about the security of the fully homomorphic encryption.

    A HYBRIDIZED ENCRYPTION SCHEME BASED ON ELLIPTIC CURVE CRYPTOGRAPHY FOR SECURING DATA IN SMART HEALTHCARE

    Get PDF
    Recent developments in smart healthcare have brought us a great deal of convenience. Connecting common objects to the Internet is made possible by the Internet of Things (IoT). These connected gadgets have sensors and actuators for data collection and transfer. However, if users' private health information is compromised or exposed, it will seriously harm their privacy and may endanger their lives. In order to encrypt data and establish perfectly alright access control for such sensitive information, attribute-based encryption (ABE) has typically been used. Traditional ABE, however, has a high processing overhead. As a result, an effective security system algorithm based on ABE and Fully Homomorphic Encryption (FHE) is developed to protect health-related data. ABE is a workable option for one-to-many communication and perfectly alright access management of encrypting data in a cloud environment. Without needing to decode the encrypted data, cloud servers can use the FHE algorithm to take valid actions on it. Because of its potential to provide excellent security with a tiny key size, elliptic curve cryptography (ECC) algorithm is also used. As a result, when compared to related existing methods in the literature, the suggested hybridized algorithm (ABE-FHE-ECC) has reduced computation and storage overheads. A comprehensive safety evidence clearly shows that the suggested method is protected by the Decisional Bilinear Diffie-Hellman postulate. The experimental results demonstrate that this system is more effective for devices with limited resources than the conventional ABE when the system’s performance is assessed by utilizing standard model

    Efficient Fully-Leakage Resilient One-More Signature Schemes

    Get PDF
    In a recent paper Faonio, Nielsen and Venturi (ICALP 2015) gave new constructions of leakage-resilient signature schemes. The signature schemes proposed remain unforgeable against an adversary leaking arbitrary information on the entire state of the signer, including the random coins of the signing algorithm. The main feature of their signature schemes is that they offer a graceful degradation of security in situations where standard existential unforgeability is impossible. The notion, put forward by Nielsen, Venturi, and Zottarel (PKC 2014), defines a slack parameter γ\gamma which, roughly speaking, describes how gracefully the security degrades. Unfortunately, the standard-model signature scheme of Faonio,Nielsen and Venturi has a slack parameter that depends on the number of signatures queried by the adversary. In this paper we show two new constructions in the standard model where the above limitation is avoided. Specifically, the first scheme achieves slack parameter O(1/λ)O(1/\lambda) where λ\lambda is the security parameter and it is based on standard number theoretic assumptions, the second scheme achieves optimal slack parameter (i.e. γ=1\gamma = 1) and it is based on knowledge of the exponent assumptions. Our constructions are efficient and have leakage rate 1o(1)1 - o(1), most notably our second construction has signature size of only 8 group elements which makes it the leakage-resilient signature scheme with the shortest signature size known to the best of our knowledge

    Deterministic Public-Key Encryption under Continual Leakage

    Get PDF
    Deterministic public-key encryption, introduced by Bellare, Boldyreva, and O’Neill (CRYPTO 2007), is an important technique for searchable encryption; it allows quick, logarithmic-time, search over encrypted data items. The technique is most effective in scenarios where frequent search queries are performed over a huge database of unpredictable data items. We initiate the study of deterministic public-key encryption (D-PKE) in the presence of leakage. We formulate appropriate security notions for leakage-resilient D-PKE, and present constructions that achieve them in the standard model. We work in the continual leakage model, where the secret-key is updated at regular intervals and an attacker can learn arbitrary but bounded leakage on the secret key during each time interval. We, however, do not consider leakage during the updates. Our main construction is based on the (standard) linear assumption in bilinear groups, tolerat- ing up to 0.5 - o(1) fraction of arbitrary leakage. The leakage rate can be improved to 1 - o(1) by relying on the SXDH assumption. At a technical level, we propose and construct a “continual leakage resilient” version of the all-but-one lossy trapdoor functions, introduced by Peikert and Waters (STOC 2008). Our formulation and construction of leakage-resilient lossy-TDFs is of independent general interest for leakage-resilient cryptography

    Secure Data Sharing in Cloud Computing: A Comprehensive Review

    Get PDF
    Cloud Computing is an emerging technology, which relies on sharing computing resources. Sharing of data in the group is not secure as the cloud provider cannot be trusted. The fundamental difficulties in distributed computing of cloud suppliers is Data Security, Sharing, Resource scheduling and Energy consumption. Key-Aggregate cryptosystem used to secure private/public data in the cloud. This key is consistent size aggregate for adaptable decisions of ciphertext in cloud storage. Virtual Machines (VMs) provisioning is effectively empowered the cloud suppliers to effectively use their accessible resources and get higher benefits. The most effective method to share information resources among the individuals from the group in distributed storage is secure, flexible and efficient. Any data stored in different cloud data centers are corrupted, recovery using regenerative coding. Security is provided many techniques like Forward security, backward security, Key-Aggregate cryptosystem, Encryption and Re-encryption etc. The energy is reduced using Energy-Efficient Virtual Machines Scheduling in Multi-Tenant Data Centers

    Secure data sharing in cloud computing: a comprehensive review

    Get PDF
    Cloud Computing is an emerging technology, which relies on sharing computing resources. Sharing of data in the group is not secure as the cloud provider cannot be trusted. The fundamental difficulties in distributed computing of cloud suppliers is Data Security, Sharing, Resource scheduling and Energy consumption. Key-Aggregate cryptosystem used to secure private/public data in the cloud. This key is consistent size aggregate for adaptable decisions of ciphertext in cloud storage. Virtual Machines (VMs) provisioning is effectively empowered the cloud suppliers to effectively use their accessible resources and get higher benefits. The most effective method to share information resources among the individuals from the group in distributed storage is secure, flexible and efficient. Any data stored in different cloud data centers are corrupted, recovery using regenerative coding. Security is provided many techniques like Forward security, backward security, Key-Aggregate cryptosystem, Encryption and Re-encryption etc. The energy is reduced using Energy-Efficient Virtual Machines Scheduling in Multi-Tenant Data Centers

    On the Leakage Resilience of Ring-LWE Based Public Key Encryption

    Get PDF
    We consider the leakage resilience of the Ring-LWE analogue of the Dual-Regev encryption scheme (R-Dual-Regev for short), originally presented by Lyubashevsky et al.~(Eurocrypt \u2713). Specifically, we would like to determine whether the R-Dual-Regev encryption scheme remains IND-CPA secure, even in the case where an attacker leaks information about the secret key. We consider the setting where RR is the ring of integers of the mm-th cyclotomic number field, for mm which is a power-of-two, and the Ring-LWE modulus is set to q1modmq \equiv 1 \mod m. This is the common setting used in practice and is desirable in terms of the efficiency and simplicity of the scheme. Unfortunately, in this setting RqR_q is very far from being a field so standard techniques for proving leakage resilience in the general lattice setting, which rely on the leftover hash lemma, do not apply. Therefore, new techniques must be developed. In this work, we put forth a high-level approach for proving the leakage resilience of the R-Dual-Regev scheme, by generalizing the original proof of Lyubashevsky et al.~(Eurocrypt \u2713). We then give three instantiations of our approach, proving that the R-Dual-Regev remains IND-CPA secure in the presence of three natural, non-adaptive leakage classes
    corecore