128,164 research outputs found

    A simulation study of the use of electric vehicles as storage on the New Zealand electricity grid

    Get PDF
    This paper describes a simulation to establish the extent to which reliance on non-dispatchable energy sources, most typically wind generation, could in the future be extended beyond received norms, by utilizing the distributed battery capacity of an electric vehicle fleet. The notion of exploiting the distributed battery capacity of a nation’s electric vehicle fleet as grid storage is not new. However, this simulation study specifically examines the potential impact of this idea in the New Zealand context. The simulation makes use of real and projected data in relation to vehicle usage, full potential non-dispatchable generation capacity and availability, taking into account weather variation, and typical daily and seasonal patterns of usage. It differs from previous studies in that it is based on individual vehicles, rather than a bulk battery model. At this stage the analysis is aggregated, and does not take into account local or regional flows. A more detailed analysis of these localized effects will follow in subsequent stages of the simulation

    Electric Vehicle (EV)-Assisted Demand-Side Management in Smart Grid

    Get PDF
    While relieving the dependency on diminishing fossil fuels, Electric Vehicles (EVs) provide a promising opportunity to realise an eco-friendly and cost-effective means of transportation. However, the enormous electricity demand imposed by the wide-scale deployment of EVs can put power infrastructure under critical strain, potentially impacting the efficiency, resilience, and safety of the electric power supply. Interestingly, EVs are deferrable loads with flexible charging requirements, making them an ideal prospect for the optimisation of consumer demand for energy, referred to as demand-side management. Furthermore, with the recent introduction of Vehicle-to-Grid (V2G) technology, EVs are now able to act as residential battery systems, enabling EV customers to store energy and use them as backup power for homes or deliver back to the grid when required. Hence, this thesis studies Electric Vehicle (EV)-assisted demand-side management strategies to manage peak electricity demand, with the long-term objective of transforming to a fully EV-based transportation system without requiring major upgrades in existing grid infrastructure. Specifically, we look at ways to optimise residential EV charging and discharging for smart grid, while addressing numerous requirements from EV customer's perspective and power system's perspective. First, we develop an EV charge scheduling algorithm with the objective of tracking an arbitrary power profile. The design of the algorithm is inspired by water-filling theory in communication systems design, and the algorithm is applied to schedule EV charging following a day-ahead renewable power generation profile. Then we extend that algorithm by incorporating V2G operation to shape the load curve in residential communities via valley-filling and peak-shaving. In the proposed EV charge-discharge algorithm, EVs are distributedly coordinated by implementing a non-cooperative game. Our numerical simulation results demonstrate that the proposed algorithm is effective in flattening the load curve while satisfying all heterogeneous charge requirements across EVs. Next, we propose an algorithm for network-aware EV charging and discharging, with an emphasis on both EV customer economics and distribution network aspects. The core of the algorithm is a Quadratic Program (QP) that is formulated to minimise the operational costs accrued to EV customers while maintaining distribution feeder nodal voltage magnitudes within prescribed thresholds. By means of a receding horizon control approach, the algorithm implements the respective QP-based EV charge-discharge control sequences in near-real-time. Our simulation results demonstrate that the proposed algorithm offers significant reductions in operational costs associated with EV charging and discharging, while also mitigating under-voltage and over-voltage conditions arising from peak power flows and reverse power flows in the distribution network. Moreover, the proposed algorithm is shown to be robust to non-deterministic EV arrivals and departures. While the previous algorithm ensures a stable voltage profile across the entire distribution feeder, it is limited to balanced power distribution networks. Therefore, we next extend that algorithm to facilitate EV charging and discharging in unbalanced distribution networks. The proposed algorithm also supports distributed EV charging and discharging coordination, where EVs determine their charge-discharge profiles in parallel, using an Alternating Direction Method of Multipliers (ADMM)-based approach driven by peer-to-peer EV communication. Our simulation results confirm that the proposed distributed algorithm is computationally efficient when compared to its centralised counterpart. Moreover, the proposed algorithm is shown to be successful in terms of correcting any voltage violations stemming from non-EV load, as well as, satisfying all EV charge requirements without causing any voltage violations

    Architectures for smart end-user services in the power grid

    Get PDF
    Abstract-The increase of distributed renewable electricity generators, such as solar cells and wind turbines, requires a new energy management system. These distributed generators introduce bidirectional energy flows in the low-voltage power grid, requiring novel coordination mechanisms to balance local supply and demand. Closed solutions exist for energy management on the level of individual homes. However, no service architectures have been defined that allow the growing number of end-users to interact with the other power consumers and generators and to get involved in more rational energy consumption patterns using intuitive applications. We therefore present a common service architecture that allows houses with renewable energy generation and smart energy devices to plug into a distributed energy management system, integrated with the public power grid. Next to the technical details, we focus on the usability aspects of the end-user applications in order to contribute to high service adoption and optimal user involvement. The presented architecture facilitates end-users to reduce net energy consumption, enables power grid providers to better balance supply and demand, and allows new actors to join with new services. We present a novel simulator that allows to evaluate both the power grid and data communication aspects, and illustrate a 22% reduction of the peak load by deploying a central coordinator inside the home gateway of an end-user

    The role of intelligent systems in delivering the smart grid

    Get PDF
    The development of "smart" or "intelligent" energy networks has been proposed by both EPRI's IntelliGrid initiative and the European SmartGrids Technology Platform as a key step in meeting our future energy needs. A central challenge in delivering the energy networks of the future is the judicious selection and development of an appropriate set of technologies and techniques which will form "a toolbox of proven technical solutions". This paper considers functionality required to deliver key parts of the Smart Grid vision of future energy networks. The role of intelligent systems in providing these networks with the requisite decision-making functionality is discussed. In addition to that functionality, the paper considers the role of intelligent systems, in particular multi-agent systems, in providing flexible and extensible architectures for deploying intelligence within the Smart Grid. Beyond exploiting intelligent systems as architectural elements of the Smart Grid, with the purpose of meeting a set of engineering requirements, the role of intelligent systems as a tool for understanding what those requirements are in the first instance, is also briefly discussed
    corecore