638 research outputs found

    Parameterized Edge Hamiltonicity

    Full text link
    We study the parameterized complexity of the classical Edge Hamiltonian Path problem and give several fixed-parameter tractability results. First, we settle an open question of Demaine et al. by showing that Edge Hamiltonian Path is FPT parameterized by vertex cover, and that it also admits a cubic kernel. We then show fixed-parameter tractability even for a generalization of the problem to arbitrary hypergraphs, parameterized by the size of a (supplied) hitting set. We also consider the problem parameterized by treewidth or clique-width. Surprisingly, we show that the problem is FPT for both of these standard parameters, in contrast to its vertex version, which is W-hard for clique-width. Our technique, which may be of independent interest, relies on a structural characterization of clique-width in terms of treewidth and complete bipartite subgraphs due to Gurski and Wanke

    Deterministic Distributed Edge-Coloring via Hypergraph Maximal Matching

    Full text link
    We present a deterministic distributed algorithm that computes a (2Δ1)(2\Delta-1)-edge-coloring, or even list-edge-coloring, in any nn-node graph with maximum degree Δ\Delta, in O(log7Δlogn)O(\log^7 \Delta \log n) rounds. This answers one of the long-standing open questions of \emph{distributed graph algorithms} from the late 1980s, which asked for a polylogarithmic-time algorithm. See, e.g., Open Problem 4 in the Distributed Graph Coloring book of Barenboim and Elkin. The previous best round complexities were 2O(logn)2^{O(\sqrt{\log n})} by Panconesi and Srinivasan [STOC'92] and O~(Δ)+O(logn)\tilde{O}(\sqrt{\Delta}) + O(\log^* n) by Fraigniaud, Heinrich, and Kosowski [FOCS'16]. A corollary of our deterministic list-edge-coloring also improves the randomized complexity of (2Δ1)(2\Delta-1)-edge-coloring to poly(loglogn)(\log\log n) rounds. The key technical ingredient is a deterministic distributed algorithm for \emph{hypergraph maximal matching}, which we believe will be of interest beyond this result. In any hypergraph of rank rr --- where each hyperedge has at most rr vertices --- with nn nodes and maximum degree Δ\Delta, this algorithm computes a maximal matching in O(r5log6+logrΔlogn)O(r^5 \log^{6+\log r } \Delta \log n) rounds. This hypergraph matching algorithm and its extensions lead to a number of other results. In particular, a polylogarithmic-time deterministic distributed maximal independent set algorithm for graphs with bounded neighborhood independence, hence answering Open Problem 5 of Barenboim and Elkin's book, a ((logΔ/ε)O(log(1/ε)))((\log \Delta/\varepsilon)^{O(\log (1/\varepsilon))})-round deterministic algorithm for (1+ε)(1+\varepsilon)-approximation of maximum matching, and a quasi-polylogarithmic-time deterministic distributed algorithm for orienting λ\lambda-arboricity graphs with out-degree at most (1+ε)λ(1+\varepsilon)\lambda, for any constant ε>0\varepsilon>0, hence partially answering Open Problem 10 of Barenboim and Elkin's book

    Robust Densest Subgraph Discovery

    Full text link
    Dense subgraph discovery is an important primitive in graph mining, which has a wide variety of applications in diverse domains. In the densest subgraph problem, given an undirected graph G=(V,E)G=(V,E) with an edge-weight vector w=(we)eEw=(w_e)_{e\in E}, we aim to find SVS\subseteq V that maximizes the density, i.e., w(S)/Sw(S)/|S|, where w(S)w(S) is the sum of the weights of the edges in the subgraph induced by SS. Although the densest subgraph problem is one of the most well-studied optimization problems for dense subgraph discovery, there is an implicit strong assumption; it is assumed that the weights of all the edges are known exactly as input. In real-world applications, there are often cases where we have only uncertain information of the edge weights. In this study, we provide a framework for dense subgraph discovery under the uncertainty of edge weights. Specifically, we address such an uncertainty issue using the theory of robust optimization. First, we formulate our fundamental problem, the robust densest subgraph problem, and present a simple algorithm. We then formulate the robust densest subgraph problem with sampling oracle that models dense subgraph discovery using an edge-weight sampling oracle, and present an algorithm with a strong theoretical performance guarantee. Computational experiments using both synthetic graphs and popular real-world graphs demonstrate the effectiveness of our proposed algorithms.Comment: 10 pages; Accepted to ICDM 201

    Hypercore Decomposition for Non-Fragile Hyperedges: Concepts, Algorithms, Observations, and Applications

    Full text link
    Hypergraphs are a powerful abstraction for modeling high-order relations, which are ubiquitous in many fields. A hypergraph consists of nodes and hyperedges (i.e., subsets of nodes); and there have been a number of attempts to extend the notion of kk-cores, which proved useful with numerous applications for pairwise graphs, to hypergraphs. However, the previous extensions are based on an unrealistic assumption that hyperedges are fragile, i.e., a high-order relation becomes obsolete as soon as a single member leaves it. In this work, we propose a new substructure model, called (kk, tt)-hypercore, based on the assumption that high-order relations remain as long as at least tt fraction of the members remain. Specifically, it is defined as the maximal subhypergraph where (1) every node has degree at least kk in it and (2) at least tt fraction of the nodes remain in every hyperedge. We first prove that, given tt (or kk), finding the (kk, tt)-hypercore for every possible kk (or tt) can be computed in time linear w.r.t the sum of the sizes of hyperedges. Then, we demonstrate that real-world hypergraphs from the same domain share similar (kk, tt)-hypercore structures, which capture different perspectives depending on tt. Lastly, we show the successful applications of our model in identifying influential nodes, dense substructures, and vulnerability in hypergraphs.Comment: 24 pages, 14 figure
    corecore