71 research outputs found

    A study of blow-ups in the Keller-Segel model of chemotaxis

    Full text link
    We study the Keller-Segel model of chemotaxis and develop a composite particle-grid numerical method with adaptive time stepping which allows us to accurately resolve singular solutions. The numerical findings (in two dimensions) are then compared with analytical predictions regarding formation and interaction of singularities obtained via analysis of the stochastic differential equations associated with the Keller-Segel model

    An unconditionally energy stable and positive upwind DG scheme for the Keller-Segel model

    Full text link
    The well-suited discretization of the Keller-Segel equations for chemotaxis has become a very challenging problem due to the convective nature inherent to them. This paper aims to introduce a new upwind, mass-conservative, positive and energy-dissipative discontinuous Galerkin scheme for the Keller-Segel model. This approach is based on the gradient-flow structure of the equations. In addition, we show some numerical experiments in accordance with the aforementioned properties of the discretization. The numerical results obtained emphasize the really good behaviour of the approximation in the case of chemotactic collapse, where very steep gradients appear.Comment: 24 pages, 17 figures, 4 table

    Bound-preserving finite element approximations of the Keller-Segel equations

    Full text link
    This paper aims to develop numerical approximations of the Keller--Segel equations that mimic at the discrete level the lower bounds and the energy law of the continuous problem. We solve these equations for two unknowns: the organism (or cell) density, which is a positive variable, and the chemoattractant density, which is a nonnegative variable. We propose two algorithms, which combine a stabilized finite element method and a semi-implicit time integration. The stabilization consists of a nonlinear artificial diffusion that employs a graph-Laplacian operator and a shock detector that localizes local extrema. As a result, both algorithms turn out to be nonlinear.Both algorithms can generate cell and chemoattractant numerical densities fulfilling lower bounds. However, the first algorithm requires a suitable constraint between the space and time discrete parameters, whereas the second one does not. We design the latter to attain a discrete energy law on acute meshes. We report some numerical experiments to validate the theoretical results on blowup and non-blowup phenomena. In the blowup setting, we identify a \textit{locking} phenomenon that relates the L(Ω)L^\infty(\Omega)-norm to the L1(Ω)L^1(\Omega)-norm limiting the growth of the singularity when supported on a macroelement.Comment: 27 pages, 22 figure

    A posteriori error control for a Discontinuous Galerkin approximation of a Keller-Segel model

    Full text link
    We provide a posteriori error estimates for a discontinuous Galerkin scheme for the parabolic-elliptic Keller-Segel system in 2 or 3 space dimensions. The estimates are conditional, in the sense that an a posteriori computable quantity needs to be small enough - which can be ensured by mesh refinement - and optimal in the sense that the error estimator decays with the same order as the error under mesh refinement. A specific feature of our error estimator is that it can be used to prove existence of a weak solution up to a certain time based on numerical results.Comment: 31 pages, 1 figure, 5 table
    corecore