3,608 research outputs found

    Split decomposition and graph-labelled trees: characterizations and fully-dynamic algorithms for totally decomposable graphs

    Get PDF
    In this paper, we revisit the split decomposition of graphs and give new combinatorial and algorithmic results for the class of totally decomposable graphs, also known as the distance hereditary graphs, and for two non-trivial subclasses, namely the cographs and the 3-leaf power graphs. Precisely, we give strutural and incremental characterizations, leading to optimal fully-dynamic recognition algorithms for vertex and edge modifications, for each of these classes. These results rely on a new framework to represent the split decomposition, namely the graph-labelled trees, which also captures the modular decomposition of graphs and thereby unify these two decompositions techniques. The point of the paper is to use bijections between these graph classes and trees whose nodes are labelled by cliques and stars. Doing so, we are also able to derive an intersection model for distance hereditary graphs, which answers an open problem.Comment: extended abstract appeared in ISAAC 2007: Dynamic distance hereditary graphs using split decompositon. In International Symposium on Algorithms and Computation - ISAAC. Number 4835 in Lecture Notes, pages 41-51, 200

    A survey on algorithmic aspects of modular decomposition

    Full text link
    The modular decomposition is a technique that applies but is not restricted to graphs. The notion of module naturally appears in the proofs of many graph theoretical theorems. Computing the modular decomposition tree is an important preprocessing step to solve a large number of combinatorial optimization problems. Since the first polynomial time algorithm in the early 70's, the algorithmic of the modular decomposition has known an important development. This paper survey the ideas and techniques that arose from this line of research

    The fully residually F quotients of F*<x,y>

    Full text link
    We describe the fully residually F; or limit groups relative to F; (where F is a free group) that arise from systems of equations in two variables over F that have coefficients in F.Comment: 64 pages, 2 figures. Following recommendations from a referee, the paper has been completely reorganized and many small mistakes have been corrected. There were also a few gaps in the earlier version of the paper that have been fixed. In particular much of the content of Section 8 in the previous version had to be replaced. This paper is to appear in Groups. Geom. Dy

    Bayesian clustering in decomposable graphs

    Full text link
    In this paper we propose a class of prior distributions on decomposable graphs, allowing for improved modeling flexibility. While existing methods solely penalize the number of edges, the proposed work empowers practitioners to control clustering, level of separation, and other features of the graph. Emphasis is placed on a particular prior distribution which derives its motivation from the class of product partition models; the properties of this prior relative to existing priors is examined through theory and simulation. We then demonstrate the use of graphical models in the field of agriculture, showing how the proposed prior distribution alleviates the inflexibility of previous approaches in properly modeling the interactions between the yield of different crop varieties.Comment: 3 figures, 1 tabl

    Polar syzygies in characteristic zero: the monomial case

    Get PDF
    Given a set of forms f={f_1,...,f_m} in R=k[x_1,...,x_n], where k is a field of characteristic zero, we focus on the first syzygy module Z of the transposed Jacobian module D(f), whose elements are called differential syzygies of f. There is a distinct submodule P of Z coming from the polynomial relations of f through its transposed Jacobian matrix, the elements of which are called polar syzygies of f. We say that f is polarizable if equality P=Z holds. This paper is concerned with the situation where f are monomials of degree 2, in which case one can naturally associate to them a graph G(f) with loops and translate the problem into a combinatorial one. A main result is a complete combinatorial characterization of polarizability in terms of special configurations in this graph. As a consequence, we show that polarizability implies normality of the subalgebra k[f] of R and that the converse holds provided the graph G(f) is free of certain degenerate configurations. One main combinatorial class of polarizability is the class of polymatroidal sets. We also prove that if the edge graph of G(f) has diameter at most 2 then f is polarizable. We establish a curious connection with birationality of rational maps defined by monomial quadrics.Comment: 33 pages, 15 figure
    • …
    corecore