100 research outputs found

    Joint Sensing Matrix and Sparsifying Dictionary Optimization for Tensor Compressive Sensing.

    Get PDF
    Tensor compressive sensing (TCS) is a multidimensional framework of compressive sensing (CS), and it is advantageous in terms of reducing the amount of storage, easing hardware implementations, and preserving multidimensional structures of signals in comparison to a conventional CS system. In a TCS system, instead of using a random sensing matrix and a predefined dictionary, the average-case performance can be further improved by employing an optimized multidimensional sensing matrix and a learned multilinear sparsifying dictionary. In this paper, we propose an approach that jointly optimizes the sensing matrix and dictionary for a TCS system. For the sensing matrix design in TCS, an extended separable approach with a closed form solution and a novel iterative nonseparable method are proposed when the multilinear dictionary is fixed. In addition, a multidimensional dictionary learning method that takes advantages of the multidimensional structure is derived, and the influence of sensing matrices is taken into account in the learning process. A joint optimization is achieved via alternately iterating the optimization of the sensing matrix and dictionary. Numerical experiments using both synthetic data and real images demonstrate the superiority of the proposed approache

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Nonlocal tensor sparse representation and low-rank regularization for hyperspectral image compressive sensing reconstruction

    Get PDF
    Hyperspectral image compressive sensing reconstruction (HSI-CSR) is an important issue in remote sensing, and has recently been investigated increasingly by the sparsity prior based approaches. However, most of the available HSI-CSR methods consider the sparsity prior in spatial and spectral vector domains via vectorizing hyperspectral cubes along a certain dimension. Besides, in most previous works, little attention has been paid to exploiting the underlying nonlocal structure in spatial domain of the HSI. In this paper, we propose a nonlocal tensor sparse and low-rank regularization (NTSRLR) approach, which can encode essential structured sparsity of an HSI and explore its advantages for HSI-CSR task. Specifically, we study how to utilize reasonably the l1 -based sparsity of core tensor and tensor nuclear norm function as tensor sparse and low-rank regularization, respectively, to describe the nonlocal spatial-spectral correlation hidden in an HSI. To study the minimization problem of the proposed algorithm, we design a fast implementation strategy based on the alternative direction multiplier method (ADMM) technique. Experimental results on various HSI datasets verify that the proposed HSI-CSR algorithm can significantly outperform existing state-of-the-art CSR techniques for HSI recovery

    Using the Proximal Gradient and the Accelerated Proximal Gradient as a Canonical Polyadic tensor decomposition Algorithms in difficult situations

    Get PDF
    Canonical Polyadic (CP) tensor decomposition is useful in many real-world applications due to its uniqueness, and the ease of interpretation of its factor matrices. This work addresses the problem of calculating the CP decomposition of tensors in difficult cases where the factor matrices in one or all modes are almost collinear - i.e. bottleneck or swamp problems arise. This is done by introducing a constraint on the coherences of the factor matrices that ensures the existence of a best low-rank approximation, which makes it possible to estimate these highly correlated factors. Two new algorithms optimizing the CP decomposition based on proximal methods are proposed. Simulation results are provided and demonstrate the good behaviour of these algorithms, as well as a better compromise between accuracy and convergence speed than other algorithms in the literature

    Occlusion reasoning for multiple object visual tracking

    Full text link
    Thesis (Ph.D.)--Boston UniversityOcclusion reasoning for visual object tracking in uncontrolled environments is a challenging problem. It becomes significantly more difficult when dense groups of indistinguishable objects are present in the scene that cause frequent inter-object interactions and occlusions. We present several practical solutions that tackle the inter-object occlusions for video surveillance applications. In particular, this thesis proposes three methods. First, we propose "reconstruction-tracking," an online multi-camera spatial-temporal data association method for tracking large groups of objects imaged with low resolution. As a variant of the well-known Multiple-Hypothesis-Tracker, our approach localizes the positions of objects in 3D space with possibly occluded observations from multiple camera views and performs temporal data association in 3D. Second, we develop "track linking," a class of offline batch processing algorithms for long-term occlusions, where the decision has to be made based on the observations from the entire tracking sequence. We construct a graph representation to characterize occlusion events and propose an efficient graph-based/combinatorial algorithm to resolve occlusions. Third, we propose a novel Bayesian framework where detection and data association are combined into a single module and solved jointly. Almost all traditional tracking systems address the detection and data association tasks separately in sequential order. Such a design implies that the output of the detector has to be reliable in order to make the data association work. Our framework takes advantage of the often complementary nature of the two subproblems, which not only avoids the error propagation issue from which traditional "detection-tracking approaches" suffer but also eschews common heuristics such as "nonmaximum suppression" of hypotheses by modeling the likelihood of the entire image. The thesis describes a substantial number of experiments, involving challenging, notably distinct simulated and real data, including infrared and visible-light data sets recorded ourselves or taken from data sets publicly available. In these videos, the number of objects ranges from a dozen to a hundred per frame in both monocular and multiple views. The experiments demonstrate that our approaches achieve results comparable to those of state-of-the-art approaches
    • …
    corecore