327 research outputs found

    Decentralized Massive MIMO Processing Exploring Daisy-chain Architecture and Recursive Algorithms

    Full text link
    Algorithms for Massive MIMO uplink detection and downlink precoding typically rely on a centralized approach, by which baseband data from all antenna modules are routed to a central node in order to be processed. In the case of Massive MIMO, where hundreds or thousands of antennas are expected in the base-station, said routing becomes a bottleneck since interconnection throughput is limited. This paper presents a fully decentralized architecture and an algorithm for Massive MIMO uplink detection and downlink precoding based on the Stochastic Gradient Descent (SGD) method, which does not require a central node for these tasks. Through a recursive approach and very low complexity operations, the proposed algorithm provides a good trade-off between performance, interconnection throughput and latency. Further, our proposed solution achieves significantly lower interconnection data-rate than other architectures, enabling future scalability.Comment: Manuscript accepted for publication in IEEE Transactions on Signal Processin

    Systems with Massive Number of Antennas: Distributed Approaches

    Get PDF
    As 5G is entering maturity, the research interest has shifted towards 6G, and specially the new use cases that the future telecommunication infrastructure needs to support. These new use cases encompass much higher requirements, specifically: higher communication data-rates, larger number of users, higher accuracy in localization, possibility to wirelessly charge devices, among others.The radio access network (RAN) has already gone through an evolution on the path towards 5G. One of the main changes was a large increment of the number of antennas in the base-station. Some of them may even reach 100 elements, in what is commonly referred as Massive MIMO. New proposals for 6G RAN point in the direction of continuing this path of increasing the number of antennas, and locate them throughout a certain area of service. Different technologies have been proposed in this direction, such as: cell-free Massive MIMO, distributed MIMO, and large intelligent surface (LIS). In this thesis we focus on LIS, whose conducted theoretical studies promise the fulfillment of the aforementioned requirements.While the theoretical capabilities of LIS have been conveniently analyzed, little has been done in terms of implementing this type of systems. When the number of antennas grow to hundreds or thousands, there are numerous challenges that need to be solved for a successful implementation. The most critical challenges are the interconnection data-rate and the computational complexity.In the present thesis we introduce the implementation challenges, and show that centralized processing architectures are no longer adequate for this type of systems. We also present different distributed processing architectures and show the benefits of this type of schemes. This work aims at giving a system-design guideline that helps the system designer to make the right decisions when designing these type of systems. For that, we provide algorithms, performance analysis and comparisons, including first order evaluation of the interconnection data-rate, processing latency, memory and energy consumption. These numbers are based on models and available data in the literature. Exact values depend on the selected technology, and will be accurately determined after building and testing these type of systems.The thesis concentrates mostly on the topic of communication, with additional exploration of other areas, such as localization. In case of localization, we benefit from the high spatial resolution of a very-large array that provides very rich channel state information (CSI). A CSI-based fingerprinting via neural network technique is selected for this case with promising results. As the communication and localization services are based on the acquisition of CSI, we foresee a common system architecture capable of supporting both cases. Further work in this direction is recommended, with the possibility of including other applications such as sensing.The obtained results indicate that the implementation of these very-large array systems is feasible, but the challenges are numerous. The proposed solutions provide encouraging results that need to be verified with hardware implementations and real measurements

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin

    Uncoordinated and Decentralized Processing in Extra-Large MIMO Arrays

    Full text link
    We propose a decentralized receiver for extra-large multiple-input multiple-output (XL-MIMO) arrays. Our method operates with no central processing unit (CPU) and all the signal detection tasks are done in distributed nodes. We exploit a combined message-passing framework to design an uncoordinated detection scheme that overcomes three major challenges in the XL-MIMO systems: computational complexity, scalability and non-stationarities in user energy distribution. Our numerical evaluations show a significant performance improvement compared to benchmark distributed methods while operating very close to the centralized receivers.Comment: 14 pages, 3 figure

    Beyond Massive MIMO : Trade-offs and Opportunities with Large Multi-Antenna Systems

    Get PDF
    After the commercial emergence of 5G, the research community is already putting its focus on proposing innovative solutions to enable the upcoming 6G. One important lesson put forth by 5G research was that scaling up the conventional multiple-input-multiple-output (MIMO) technology by increasing the number of antennas could be extremely beneficial for effectively multiplexing data streams in the spatial domain. This idea was embodied in massive MIMO, which constitutes one of the major technical advancements included in 5G. Consequently, 6G research efforts have been largely directed towards studying ways to further scale up wireless systems, as can be seen in some of the proposed 6G enabling technologies like large intelligent surface (LIS), cell-free massive MIMO, or even reconfigurable intelligent surface (RIS). This thesis studies the possibilities offered by some of these technologies, as well as the trade-offs that may naturally arise when scaling up such wireless systems.An important part of this thesis deals with decentralized solutions for base station (BS) technologies including a large number of antennas. Already in the initial massive MIMO prototypes, the increased number of BS antennas led to scalability issues due to the high interconnection bandwidths required to send the received signals---as well as the channel state information (CSI)---to a central processing unit (CPU) in charge of the data processing. These issues can only be exacerbated if we consider novel system proposals like LIS, where the number of BS antennas may be increased by an order of magnitude with respect to massive MIMO, or cell-free massive MIMO, where the BS antennas may be located far from each other. We provide a number of decentralized schemes to process the received data while restricting the information that has to be shared with a CPU. We also provide a framework to study architectures with an arbitrary level of decentralization, showing that there exists a direct trade-off between the interconnection bandwidth to a CPU and the complexity of the decentralized processing required for fixed user rates.Another part of this thesis studies RIS-based solutions to enhance the multiplexing performance of wireless communication systems. RIS constitutes one of the most attractive 6G enabling technologies since it provides a cost- and energy-efficient solution to improve the wireless propagation links by generating favorable reflections. We extend the concept of RIS by considering reconfigurable surfaces (RSs) with different processing capabilities, and we show how these surfaces may be employed for achieving perfect spatial multiplexing at reduced processing complexity in general multi-antenna communication settings. We also show that these surfaces can exploit the available degrees of freedom---e.g., due to excess of BS antennas---to embed their own data into the enhanced channel

    MMSE-Optimal Sequential Processing for Cell-Free Massive MIMO With Radio Stripes

    Full text link
    Cell-free massive multiple-input-multiple-output (mMIMO) is an emerging technology for beyond 5G with its promising features such as higher spectral efficiency and superior spatial diversity as compared to conventional multiple-input-multiple-output (MIMO) technology. The main working principle of cell-free mMIMO is that many distributed access points (APs) cooperate simultaneously to serve all the users within the network without creating cell boundaries. This paper considers the uplink of a cell-free mMIMO system utilizing the radio stripe network architecture with a sequential fronthaul between the APs. A novel uplink sequential processing algorithm is developed which is proved to be optimal in both the maximum spectral efficiency (SE) and the minimum mean square error (MSE) sense. A detailed quantitative analysis of the fronthaul requirement or signaling of the proposed algorithm and its comparison with competing sub-optimal algorithms is provided. Key conclusions and implications are summarized in the form of corollaries. Based on the analytical and numerical simulation results, we conclude that the proposed scheme can greatly reduce the fronthaul signaling, without compromising the communication performance

    Trade-offs In Quasi-Decentralized Massive MIMO

    Full text link
    Typical massive multiple-input multiple-output (MIMO) architectures consider a centralized approach, in which all baseband data received by each antenna has to be sent to a central processing unit (CPU) to be processed. Due to the enormous amount of antennas expected in massive MIMO base stations (BSs), the number of connections to the CPU required in centralized massive MIMO is not scalable. In recent literature decentralized approaches have been proposed to reduce the number of connections between the antennas and the CPU. However, the reduction in the connections to the CPU requires more outputs per antenna to be generated. We study the trade-off between number of connections to the CPU and number of outputs per antenna. We propose a generalized architecture that allows exploitation of this trade-off, and we define a novel matrix decomposition that allows lossless linear equalization within our proposed architecture.Comment: 6 pages, 4 figures, accepted at IEEE ICC 2020 workshop on scalable massive MIMO technologies for beyond 5
    • …
    corecore