1,838 research outputs found

    Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching

    Full text link
    This paper presents a robotic pick-and-place system that is capable of grasping and recognizing both known and novel objects in cluttered environments. The key new feature of the system is that it handles a wide range of object categories without needing any task-specific training data for novel objects. To achieve this, it first uses a category-agnostic affordance prediction algorithm to select and execute among four different grasping primitive behaviors. It then recognizes picked objects with a cross-domain image classification framework that matches observed images to product images. Since product images are readily available for a wide range of objects (e.g., from the web), the system works out-of-the-box for novel objects without requiring any additional training data. Exhaustive experimental results demonstrate that our multi-affordance grasping achieves high success rates for a wide variety of objects in clutter, and our recognition algorithm achieves high accuracy for both known and novel grasped objects. The approach was part of the MIT-Princeton Team system that took 1st place in the stowing task at the 2017 Amazon Robotics Challenge. All code, datasets, and pre-trained models are available online at http://arc.cs.princeton.eduComment: Project webpage: http://arc.cs.princeton.edu Summary video: https://youtu.be/6fG7zwGfIk

    3D Object Reconstruction from Imperfect Depth Data Using Extended YOLOv3 Network

    Get PDF
    State-of-the-art intelligent versatile applications provoke the usage of full 3D, depth-based streams, especially in the scenarios of intelligent remote control and communications, where virtual and augmented reality will soon become outdated and are forecasted to be replaced by point cloud streams providing explorable 3D environments of communication and industrial data. One of the most novel approaches employed in modern object reconstruction methods is to use a priori knowledge of the objects that are being reconstructed. Our approach is different as we strive to reconstruct a 3D object within much more difficult scenarios of limited data availability. Data stream is often limited by insufficient depth camera coverage and, as a result, the objects are occluded and data is lost. Our proposed hybrid artificial neural network modifications have improved the reconstruction results by 8.53 which allows us for much more precise filling of occluded object sides and reduction of noise during the process. Furthermore, the addition of object segmentation masks and the individual object instance classification is a leap forward towards a general-purpose scene reconstruction as opposed to a single object reconstruction task due to the ability to mask out overlapping object instances and using only masked object area in the reconstruction process

    Improving 6D Pose Estimation of Objects in Clutter via Physics-aware Monte Carlo Tree Search

    Full text link
    This work proposes a process for efficiently searching over combinations of individual object 6D pose hypotheses in cluttered scenes, especially in cases involving occlusions and objects resting on each other. The initial set of candidate object poses is generated from state-of-the-art object detection and global point cloud registration techniques. The best-scored pose per object by using these techniques may not be accurate due to overlaps and occlusions. Nevertheless, experimental indications provided in this work show that object poses with lower ranks may be closer to the real poses than ones with high ranks according to registration techniques. This motivates a global optimization process for improving these poses by taking into account scene-level physical interactions between objects. It also implies that the Cartesian product of candidate poses for interacting objects must be searched so as to identify the best scene-level hypothesis. To perform the search efficiently, the candidate poses for each object are clustered so as to reduce their number but still keep a sufficient diversity. Then, searching over the combinations of candidate object poses is performed through a Monte Carlo Tree Search (MCTS) process that uses the similarity between the observed depth image of the scene and a rendering of the scene given the hypothesized pose as a score that guides the search procedure. MCTS handles in a principled way the tradeoff between fine-tuning the most promising poses and exploring new ones, by using the Upper Confidence Bound (UCB) technique. Experimental results indicate that this process is able to quickly identify in cluttered scenes physically-consistent object poses that are significantly closer to ground truth compared to poses found by point cloud registration methods.Comment: 8 pages, 4 figure
    corecore