8,679 research outputs found

    Fully Convolutional Networks for Continuous Sign Language Recognition

    Full text link
    Continuous sign language recognition (SLR) is a challenging task that requires learning on both spatial and temporal dimensions of signing frame sequences. Most recent work accomplishes this by using CNN and RNN hybrid networks. However, training these networks is generally non-trivial, and most of them fail in learning unseen sequence patterns, causing an unsatisfactory performance for online recognition. In this paper, we propose a fully convolutional network (FCN) for online SLR to concurrently learn spatial and temporal features from weakly annotated video sequences with only sentence-level annotations given. A gloss feature enhancement (GFE) module is introduced in the proposed network to enforce better sequence alignment learning. The proposed network is end-to-end trainable without any pre-training. We conduct experiments on two large scale SLR datasets. Experiments show that our method for continuous SLR is effective and performs well in online recognition.Comment: Accepted to ECCV202

    Sign language recognition with transformer networks

    Get PDF
    Sign languages are complex languages. Research into them is ongoing, supported by large video corpora of which only small parts are annotated. Sign language recognition can be used to speed up the annotation process of these corpora, in order to aid research into sign languages and sign language recognition. Previous research has approached sign language recognition in various ways, using feature extraction techniques or end-to-end deep learning. In this work, we apply a combination of feature extraction using OpenPose for human keypoint estimation and end-to-end feature learning with Convolutional Neural Networks. The proven multi-head attention mechanism used in transformers is applied to recognize isolated signs in the Flemish Sign Language corpus. Our proposed method significantly outperforms the previous state of the art of sign language recognition on the Flemish Sign Language corpus: we obtain an accuracy of 74.7% on a vocabulary of 100 classes. Our results will be implemented as a suggestion system for sign language corpus annotation

    Advanced Capsule Networks via Context Awareness

    Full text link
    Capsule Networks (CN) offer new architectures for Deep Learning (DL) community. Though its effectiveness has been demonstrated in MNIST and smallNORB datasets, the networks still face challenges in other datasets for images with distinct contexts. In this research, we improve the design of CN (Vector version) namely we expand more Pooling layers to filter image backgrounds and increase Reconstruction layers to make better image restoration. Additionally, we perform experiments to compare accuracy and speed of CN versus DL models. In DL models, we utilize Inception V3 and DenseNet V201 for powerful computers besides NASNet, MobileNet V1 and MobileNet V2 for small and embedded devices. We evaluate our models on a fingerspelling alphabet dataset from American Sign Language (ASL). The results show that CNs perform comparably to DL models while dramatically reducing training time. We also make a demonstration and give a link for the purpose of illustration.Comment: 12 page
    • …
    corecore