3,203 research outputs found

    Automatic Craniomaxillofacial Landmark Digitization via Segmentation-Guided Partially-Joint Regression Forest Model and Multiscale Statistical Features

    Get PDF
    The goal of this paper is to automatically digitize craniomaxillofacial (CMF) landmarks efficiently and accurately from cone-beam computed tomography (CBCT) images, by addressing the challenge caused by large morphological variations across patients and image artifacts of CBCT images

    Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer

    Full text link
    Semantic annotations are vital for training models for object recognition, semantic segmentation or scene understanding. Unfortunately, pixelwise annotation of images at very large scale is labor-intensive and only little labeled data is available, particularly at instance level and for street scenes. In this paper, we propose to tackle this problem by lifting the semantic instance labeling task from 2D into 3D. Given reconstructions from stereo or laser data, we annotate static 3D scene elements with rough bounding primitives and develop a model which transfers this information into the image domain. We leverage our method to obtain 2D labels for a novel suburban video dataset which we have collected, resulting in 400k semantic and instance image annotations. A comparison of our method to state-of-the-art label transfer baselines reveals that 3D information enables more efficient annotation while at the same time resulting in improved accuracy and time-coherent labels.Comment: 10 pages in Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Development of a Computer Vision-Based Three-Dimensional Reconstruction Method for Volume-Change Measurement of Unsaturated Soils during Triaxial Testing

    Get PDF
    Problems associated with unsaturated soils are ubiquitous in the U.S., where expansive and collapsible soils are some of the most widely distributed and costly geologic hazards. Solving these widespread geohazards requires a fundamental understanding of the constitutive behavior of unsaturated soils. In the past six decades, the suction-controlled triaxial test has been established as a standard approach to characterizing constitutive behavior for unsaturated soils. However, this type of test requires costly test equipment and time-consuming testing processes. To overcome these limitations, a photogrammetry-based method has been developed recently to measure the global and localized volume-changes of unsaturated soils during triaxial test. However, this method relies on software to detect coded targets, which often requires tedious manual correction of incorrectly coded target detection information. To address the limitation of the photogrammetry-based method, this study developed a photogrammetric computer vision-based approach for automatic target recognition and 3D reconstruction for volume-changes measurement of unsaturated soils in triaxial tests. Deep learning method was used to improve the accuracy and efficiency of coded target recognition. A photogrammetric computer vision method and ray tracing technique were then developed and validated to reconstruct the three-dimensional models of soil specimen

    Automatic Affine and Elastic Registration Strategies for Multi-dimensional Medical Images

    Get PDF
    Medical images have been used increasingly for diagnosis, treatment planning, monitoring disease processes, and other medical applications. A large variety of medical imaging modalities exists including CT, X-ray, MRI, Ultrasound, etc. Frequently a group of images need to be compared to one another and/or combined for research or cumulative purposes. In many medical studies, multiple images are acquired from subjects at different times or with different imaging modalities. Misalignment inevitably occurs, causing anatomical and/or functional feature shifts within the images. Computerized image registration (alignment) approaches can offer automatic and accurate image alignments without extensive user involvement and provide tools for visualizing combined images. This dissertation focuses on providing automatic image registration strategies. After a through review of existing image registration techniques, we identified two registration strategies that enhance the current field: (1) an automated rigid body and affine registration using voxel similarity measurements based on a sequential hybrid genetic algorithm, and (2) an automated deformable registration approach based upon a linear elastic finite element formulation. Both methods streamlined the registration process. They are completely automatic and require no user intervention. The proposed registration strategies were evaluated with numerous 2D and 3D MR images with a variety of tissue structures, orientations and dimensions. Multiple registration pathways were provided with guidelines for their applications. The sequential genetic algorithm mimics the pathway of an expert manually doing registration. Experiments demonstrated that the sequential genetic algorithm registration provides high alignment accuracy and is reliable for brain tissues. It avoids local minima/maxima traps of conventional optimization techniques, and does not require any preprocessing such as threshold, smoothing, segmentation, or definition of base points or edges. The elastic model was shown to be highly effective to accurately align areas of interest that are automatically extracted from the images, such as brains. Using a finite element method to get the displacement of each element node by applying a boundary mapping, this method provides an accurate image registration with excellent boundary alignment of each pair of slices and consequently align the entire volume automatically. This dissertation presented numerous volume alignments. Surface geometries were created directly from the aligned segmented images using the Multiple Material Marching Cubes algorithm. Using the proposed registration strategies, multiple subjects were aligned to a standard MRI reference, which is aligned to a segmented reference atlas. Consequently, multiple subjects are aligned to the segmented atlas and a full fMRI analysis is possible

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Detecting Anatomical Landmarks for Fast Alzheimer’s Disease Diagnosis

    Get PDF
    Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to diagnose Alzheimer’s disease (AD). The success of computer-aided diagnosis methods using structural MRI data is largely dependent on the two time-consuming steps: 1) nonlinear registration across subjects, and 2) brain tissue segmentation. To overcome this limitation, we propose a landmark-based feature extraction method that does not require nonlinear registration and tissue segmentation. In the training stage, in order to distinguish AD subjects from healthy controls (HCs), group comparisons, based on local morphological features, are first performed to identify brain regions that have significant group differences. In general, the centers of the identified regions become landmark locations (or AD landmarks for short) capable of differentiating AD subjects from HCs. In the testing stage, using the learned AD landmarks, the corresponding landmarks are detected in a testing image using an efficient technique based on a shape-constrained regression-forest algorithm. To improve detection accuracy, an additional set of salient and consistent landmarks are also identified to guide the AD landmark detection. Based on the identified AD landmarks, morphological features are extracted to train a support vector machine (SVM) classifier that is capable of predicting the AD condition. In the experiments, our method is evaluated on landmark detection and AD classification sequentially. Specifically, the landmark detection error (manually annotated versus automatically detected) of the proposed landmark detector is 2.41mm, and our landmark-based AD classification accuracy is 83.7%. Lastly, the AD classification performance of our method is comparable to, or even better than, that achieved by existing region-based and voxel-based methods, while the proposed method is approximately 50 times faster

    Methods for three-dimensional Registration of Multimodal Abdominal Image Data

    Get PDF
    Multimodal image registration benefits the diagnosis, treatment planning and the performance of image-guided procedures in the liver, since it enables the fusion of complementary information provided by pre- and intrainterventional data about tumor localization and access. Although there exist various registration methods, approaches which are specifically optimized for the registration of multimodal abdominal scans are only scarcely available. The work presented in this thesis aims to tackle this problem by focusing on the development, optimization and evaluation of registration methods specifically for the registration of multimodal liver scans. The contributions to the research field of medical image registration include the development of a registration evaluation methodology that enables the comparison and optimization of linear and non-linear registration algorithms using a point-based accuracy measure. This methodology has been used to benchmark standard registration methods as well as novel approaches that were developed within the frame of this thesis. The results of the methodology showed that the employed similarity measure used during the registration has a major impact on the registration accuracy of the method. Due to this influence, two alternative similarity metrics bearing the potential to be used on multimodal image data are proposed and evaluated. The first metric relies on the use of gradient information in form of Histograms of Oriented Gradients (HOG) whereas the second metric employs a siamese neural network to learn a similarity measure directly on the image data. The evaluation showed, that both metrics could compete with state of the art similarity measures in terms of registration accuracy. The HOG-metric offers the advantage that it does not require ground truth data to learn a similarity estimation, but instead it is applicable to various data sets with the sole requirement of distinct gradients. However, the Siamese metric is characterized by a higher robustness for large rotations than the HOG-metric. To train such a network, registered ground truth data is required which may be critical for multimodal image data. Yet, the results show that it is possible to apply models trained on registered synthetic data on real patient data. The last part of this thesis focuses on methods to learn an entire registration process using neural networks, thereby offering the advantage to replace the traditional, time-consuming iterative registration procedure. Within the frame of this thesis, the so-called VoxelMorph network which was originally proposed for monomodal, non-linear registration learning is extended for affine and multimodal registration learning tasks. This extension includes the consideration of an image mask during metric evaluation as well as loss functions for multimodal data, such as the pretrained Siamese metric and a loss relying on the comparison of deformation fields. Based on the developed registration evaluation methodology, the performance of the original network as well as the extended variants are evaluated for monomodal and multimodal registration tasks using multiple data sets. With the extended network variants, it is possible to learn an entire multimodal registration process for the correction of large image displacements. As for the Siamese metric, the results imply a general transferability of models trained with synthetic data to registration tasks including real patient data. Due to the lack of multimodal ground truth data, this transfer represents an important step towards making Deep Learning based registration procedures clinically usable
    • …
    corecore