288 research outputs found

    Medical Image Segmentation Combining Level Set Method and Deep Belief Networks

    Get PDF
    Medical image segmentation is an important step in medical image analysis, where the main goal is the precise delineation of organs and tumours from medical images. For instance there is evidence in the field that shows a positive correlation between the precision of these segmentations and the accuracy observed in classification systems that use these segmentations as their inputs. Over the last decades, a vast number of medical image segmentation models have been introduced, where these models can be divided into five main groups: 1) image-based approaches, 2) active contour methods, 3) machine learning techniques, 4) atlas-guided segmentation and registration and 5) hybrid models. Image-based approaches use only intensity value or texture for segmenting (i.e., thresholding technique) and they usually do not produce precise segmentation. Active contour methods can use an explicit representation (i.e., snakes) with the goal of minimizing an energy function that forces the contour to move towards strong edges and maintains the contour smoothness. The use of implicit representation in active contour methods (i.e., level set method) embeds the contour as zero level set of a higher dimensional surface (i.e., the curve representing the contour does not need to be parameterized as in the Snakes model). Although successful, the main issue with active contour methods is the fact that the energy function must contain terms describing all possible shape and appearance variations, which is a complicated task given that it is hard to design by hand all these terms. Also, this type of active contour methods may get stuck at image regions that do not belong to the object of interest. Machine learning techniques address this issue by automatically learning shape and appearance models using annotated training images. Nevertheless, in order to meet the high accuracy requirements of medical image analysis applications, machine learning methods usually need large and rich training sets and also face the complexity of the inference process. Atlas-guided segmentation and registration use an atlas image, which is constructed based on manually segmentation images. The new image is segmented by registering it with the atlas image. These techniques have been applied successfully in many applications, but they still face some issues, such as their ability to represent the variability of anatomical structure and scale in medical image, and the complexity of the registration algorithms. In this work, we propose a new hybrid segmentation approach by combining a level set method with a machine learning approach (deep belief network). Our main objective with this approach is to achieve segmentation accuracy results that are either comparable or better than the ones produced with machine learning methods, but using relatively smaller training sets. These weaker requirements on the size of training sets is compensated by the hand designed segmentation terms present in typical level set methods, that are used as prior information on the anatomy to be segmented (e.g., smooth contours, strong edges, etc.). In addition, we choose a machine learning methodology that typically requires smaller annotated training sets, compared to other methods proposed in this field. Specifically, we use deep belief networks, with training sets consisting to a large extent of un-annotated training images. In general, our hybrid segmentation approach uses the result produced by the deep belief network as a prior in the level set evolution. We validate this method on the Medical Image Computing and Computer Assisted Intervention (MICCAI) 2009 left ventricle segmentation challenge database and on the Japanese Society of Radiological Technology (JSRT) lung segmentation dataset. The experiments show that our approach produces competitive results in the field in terms of segmentation accuracy. More specifically, we show that the use of our proposed methodology in a semi-automated segmentation system (i.e., using a manual initialization) produces the best result in the field in both databases above, and in the case of a fully automated system, our method shows results competitive with the current state of the art.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 201

    Recurrent Fully Convolutional Neural Networks for Multi-slice MRI Cardiac Segmentation

    Full text link
    In cardiac magnetic resonance imaging, fully-automatic segmentation of the heart enables precise structural and functional measurements to be taken, e.g. from short-axis MR images of the left-ventricle. In this work we propose a recurrent fully-convolutional network (RFCN) that learns image representations from the full stack of 2D slices and has the ability to leverage inter-slice spatial dependences through internal memory units. RFCN combines anatomical detection and segmentation into a single architecture that is trained end-to-end thus significantly reducing computational time, simplifying the segmentation pipeline, and potentially enabling real-time applications. We report on an investigation of RFCN using two datasets, including the publicly available MICCAI 2009 Challenge dataset. Comparisons have been carried out between fully convolutional networks and deep restricted Boltzmann machines, including a recurrent version that leverages inter-slice spatial correlation. Our studies suggest that RFCN produces state-of-the-art results and can substantially improve the delineation of contours near the apex of the heart.Comment: MICCAI Workshop RAMBO 201

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Deep Structured Layers for Instance-Level Optimization in 2D and 3D Vision

    Get PDF
    The approach we present in this thesis is that of integrating optimization problems as layers in deep neural networks. Optimization-based modeling provides an additional set of tools enabling the design of powerful neural networks for a wide battery of computer vision tasks. This thesis shows formulations and experiments for vision tasks ranging from image reconstruction to 3D reconstruction. We first propose an unrolled optimization method with implicit regularization properties for reconstructing images from noisy camera readings. The method resembles an unrolled majorization minimization framework with convolutional neural networks acting as regularizers. We report state-of-the-art performance in image reconstruction on both noisy and noise-free evaluation setups across many datasets. We further focus on the task of monocular 3D reconstruction of articulated objects using video self-supervision. The proposed method uses a structured layer for accurate object deformation that controls a 3D surface by displacing a small number of learnable handles. While relying on a small set of training data per category for self-supervision, the method obtains state-of-the-art reconstruction accuracy with diverse shapes and viewpoints for multiple articulated objects. We finally address the shortcomings of the previous method that revolve around regressing the camera pose using multiple hypotheses. We propose a method that recovers a 3D shape from a 2D image by relying solely on 3D-2D correspondences regressed from a convolutional neural network. These correspondences are used in conjunction with an optimization problem to estimate per sample the camera pose and deformation. We quantitatively show the effectiveness of the proposed method on self-supervised 3D reconstruction on multiple categories without the need for multiple hypotheses

    WATCHING PEOPLE: ALGORITHMS TO STUDY HUMAN MOTION AND ACTIVITIES

    Get PDF
    Nowadays human motion analysis is one of the most active research topics in Computer Vision and it is receiving an increasing attention from both the industrial and scientific communities. The growing interest in human motion analysis is motivated by the increasing number of promising applications, ranging from surveillance, human–computer interaction, virtual reality to healthcare, sports, computer games and video conferencing, just to name a few. The aim of this thesis is to give an overview of the various tasks involved in visual motion analysis of the human body and to present the issues and possible solutions related to it. In this thesis, visual motion analysis is categorized into three major areas related to the interpretation of human motion: tracking of human motion using virtual pan-tilt-zoom (vPTZ) camera, recognition of human motions and human behaviors segmentation. In the field of human motion tracking, a virtual environment for PTZ cameras (vPTZ) is presented to overcame the mechanical limitations of PTZ cameras. The vPTZ is built on equirectangular images acquired by 360° cameras and it allows not only the development of pedestrian tracking algorithms but also the comparison of their performances. On the basis of this virtual environment, three novel pedestrian tracking algorithms for 360° cameras were developed, two of which adopt a tracking-by-detection approach while the last adopts a Bayesian approach. The action recognition problem is addressed by an algorithm that represents actions in terms of multinomial distributions of frequent sequential patterns of different length. Frequent sequential patterns are series of data descriptors that occur many times in the data. The proposed method learns a codebook of frequent sequential patterns by means of an apriori-like algorithm. An action is then represented with a Bag-of-Frequent-Sequential-Patterns approach. In the last part of this thesis a methodology to semi-automatically annotate behavioral data given a small set of manually annotated data is presented. The resulting methodology is not only effective in the semi-automated annotation task but can also be used in presence of abnormal behaviors, as demonstrated empirically by testing the system on data collected from children affected by neuro-developmental disorders

    Automatic Designs in Deep Neural Networks

    Full text link
    To train a Deep Neural Network (DNN) that performs well for a task, many design steps are taken including data designs, model designs and loss designs. Despite that remarkable progress has been made in all these domains of designing DNNs, the unexplored design space of each component is still vast. That brings the research field of developing automated techniques to lift some heavy work from human researchers when exploring the design space. The automated designs can help human researchers to make massive or challenging design choices and reduce the expertise required from human researchers. Much effort has been made towards automated designs of DNNs, including synthetic data generation, automated data augmentation, neural architecture search and so on. Despite the huge effort, the automation of DNN designs is still far from complete. This thesis contributes in two ways: identifying new problems in the DNN design pipeline that can be solved automatically, and proposing new solutions to problems that have been explored by automated designs. The first part of this thesis presents two problems that were usually solved with manual designs but can benefit from automated designs. To tackle the problem of inefficient computation due to using a static DNN architecture for different inputs, some manual efforts have been made to use different networks for different inputs as needed, such as cascade models. We propose an automated dynamic inference framework that can cut this manual effort and automatically choose different architectures for different inputs during inference. To tackle the problem of designing differentiable loss functions for non-differentiable performance metrics, researchers usually design the loss manually for each individual task. We propose an unified loss framework that reduces the amount of manual design of losses in different tasks. The second part of this thesis discusses developing new techniques in domains where the automated design has been shown effective. In the synthetic data generation domain, we propose a novel method to automatically generate synthetic data for small-data object detection. The synthetic data generated can amend the limited annotated real data of the small-data object detection tasks, such as rare disease detection. In the architecture search domain, we propose an architecture search method customized for generative adversarial networks (GANs). GANs are commonly known unstable to train where we propose this new method that can stabilize the training of GANs in the architecture search process.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163208/1/llanlan_1.pd
    • …
    corecore