367 research outputs found

    Intensional and Extensional Semantics of Bounded and Unbounded Nondeterminism

    Get PDF
    We give extensional and intensional characterizations of nondeterministic functional programs: as structure preserving functions between biorders, and as nondeterministic sequential algorithms on ordered concrete data structures which compute them. A fundamental result establishes that the extensional and intensional representations of non-deterministic programs are equivalent, by showing how to construct a unique sequential algorithm which computes a given monotone and stable function, and describing the conditions on sequential algorithms which correspond to continuity with respect to each order. We illustrate by defining may and must-testing denotational semantics for a sequential functional language with bounded and unbounded choice operators. We prove that these are computationally adequate, despite the non-continuity of the must-testing semantics of unbounded nondeterminism. In the bounded case, we prove that our continuous models are fully abstract with respect to may and must-testing by identifying a simple universal type, which may also form the basis for models of the untyped lambda-calculus. In the unbounded case we observe that our model contains computable functions which are not denoted by terms, by identifying a further "weak continuity" property of the definable elements, and use this to establish that it is not fully abstract

    Decidability and syntactic control of interference

    Get PDF
    AbstractWe investigate the decidability of observational equivalence and approximation in Reynolds’ “Syntactic Control of Interference” (SCI), a prototypical functional-imperative language in which covert interference between functions and their arguments is prevented by the use of an affine typing discipline.By associating denotations of terms in a fully abstract “relational” model of finitary basic SCI (due to Reddy) with multitape finite state automata, we show that observational approximation is not decidable (even at first order), but that observational equivalence is decidable for all terms.We then consider the same problems for basic SCI extended with non-local control in the form of backwards jumps. We show that both observational approximation and observational equivalence are decidable in this “observably sequential” version of the language by describing a fully abstract games model in which strategies are regular languages

    Asynchronous communication in process algebra : extended abstract

    Get PDF

    Adaptive Lock-Free Data Structures in Haskell: A General Method for Concurrent Implementation Swapping

    Full text link
    A key part of implementing high-level languages is providing built-in and default data structures. Yet selecting good defaults is hard. A mutable data structure's workload is not known in advance, and it may shift over its lifetime - e.g., between read-heavy and write-heavy, or from heavy contention by multiple threads to single-threaded or low-frequency use. One idea is to switch implementations adaptively, but it is nontrivial to switch the implementation of a concurrent data structure at runtime. Performing the transition requires a concurrent snapshot of data structure contents, which normally demands special engineering in the data structure's design. However, in this paper we identify and formalize an relevant property of lock-free algorithms. Namely, lock-freedom is sufficient to guarantee that freezing memory locations in an arbitrary order will result in a valid snapshot. Several functional languages have data structures that freeze and thaw, transitioning between mutable and immutable, such as Haskell vectors and Clojure transients, but these enable only single-threaded writers. We generalize this approach to augment an arbitrary lock-free data structure with the ability to gradually freeze and optionally transition to a new representation. This augmentation doesn't require changing the algorithm or code for the data structure, only replacing its datatype for mutable references with a freezable variant. In this paper, we present an algorithm for lifting plain to adaptive data and prove that the resulting hybrid data structure is itself lock-free, linearizable, and simulates the original. We also perform an empirical case study in the context of heating up and cooling down concurrent maps.Comment: To be published in ACM SIGPLAN Haskell Symposium 201

    Slot Games for Detecting Timing Leaks of Programs

    Full text link
    In this paper we describe a method for verifying secure information flow of programs, where apart from direct and indirect flows a secret information can be leaked through covert timing channels. That is, no two computations of a program that differ only on high-security inputs can be distinguished by low-security outputs and timing differences. We attack this problem by using slot-game semantics for a quantitative analysis of programs. We show how slot-games model can be used for performing a precise security analysis of programs, that takes into account both extensional and intensional properties of programs. The practicality of this approach for automated verification is also shown.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    Observably Deterministic Concurrent Strategies and Intensional Full Abstraction for Parallel-or

    Get PDF
    International audienceAlthough Plotkin's parallel-or is inherently deterministic, it has a non-deterministic interpretation in games based on (prime) event structures-in which an event has a unique causal history-because they do not directly support disjunctive causality. General event structures can express disjunctive causality and have a more permissive notion of determinism, but do not support hiding. We show that (structures equivalent to) deterministic general event structures do support hiding, and construct a new category of games based on them with a deterministic interpretation of aPCFpor, an affine variant of PCF extended with parallel-or. We then exploit this deterministic interpretation to give a relaxed notion of determinism (observable determinism) on the plain event structures model. Putting this together with our previously introduced concurrent notions of well-bracketing and innocence, we obtain an intensionally fully abstract model of aPCFpor

    Resource modalities in game semantics

    Get PDF
    The description of resources in game semantics has never achieved the simplicity and precision of linear logic, because of a misleading conception: the belief that linear logic is more primitive than game semantics. We advocate instead the contrary: that game semantics is conceptually more primitive than linear logic. Starting from this revised point of view, we design a categorical model of resources in game semantics, and construct an arena game model where the usual notion of bracketing is extended to multi- bracketing in order to capture various resource policies: linear, affine and exponential
    • …
    corecore