1,200 research outputs found

    Recursive generation of IPR fullerenes

    Full text link
    We describe a new construction algorithm for the recursive generation of all non-isomorphic IPR fullerenes. Unlike previous algorithms, the new algorithm stays entirely within the class of IPR fullerenes, that is: every IPR fullerene is constructed by expanding a smaller IPR fullerene unless it belongs to limited class of irreducible IPR fullerenes that can easily be made separately. The class of irreducible IPR fullerenes consists of 36 fullerenes with up to 112 vertices and 4 infinite families of nanotube fullerenes. Our implementation of this algorithm is faster than other generators for IPR fullerenes and we used it to compute all IPR fullerenes up to 400 vertices.Comment: 19 pages; to appear in Journal of Mathematical Chemistr

    Electronic structure of periodic curved surfaces -- continuous surface versus graphitic sponge

    Full text link
    We investigate the band structure of electrons bound on periodic curved surfaces. We have formulated Schr\"{o}dinger's equation with the Weierstrass representation when the surface is minimal, which is numerically solved. Bands and the Bloch wavefunctions are basically determined by the way in which the ``pipes'' are connected into a network, where the Bonnet(conformal)-transformed surfaces have related electronic strucutres. We then examine, as a realisation of periodic surfaces, the tight-binding model for atomic networks (``sponges''), where the low-energy spectrum coincides with those for continuous curved surfaces.Comment: 4 page

    Electronic structure of periodic curved surfaces -- topological band structure

    Full text link
    Electronic band structure for electrons bound on periodic minimal surfaces is differential-geometrically formulated and numerically calculated. We focus on minimal surfaces because they are not only mathematically elegant (with the surface characterized completely in terms of "navels") but represent the topology of real systems such as zeolites and negative-curvature fullerene. The band structure turns out to be primarily determined by the topology of the surface, i.e., how the wavefunction interferes on a multiply-connected surface, so that the bands are little affected by the way in which we confine the electrons on the surface (thin-slab limit or zero thickness from the outset). Another curiosity is that different minimal surfaces connected by the Bonnet transformation (such as Schwarz's P- and D-surfaces) possess one-to-one correspondence in their band energies at Brillouin zone boundaries.Comment: 6 pages, 8 figures, eps files will be sent on request to [email protected]
    • …
    corecore