1,003 research outputs found

    ROSIA: Rotation-Search-Based Star Identification Algorithm

    Full text link
    This paper presents a rotation-search-based approach for addressing the star identification (Star-ID) problem. The proposed algorithm, ROSIA, is a heuristics-free algorithm that seeks the optimal rotation that maximally aligns the input and catalog stars in their respective coordinates. ROSIA searches the rotation space systematically with the Branch-and-Bound (BnB) method. Crucially affecting the runtime feasibility of ROSIA is the upper bound function that prioritizes the search space. In this paper, we make a theoretical contribution by proposing a tight (provable) upper bound function that enables a 400x speed-up compared to an existing formulation. Coupling the bounding function with an efficient evaluation scheme that leverages stereographic projection and the R-tree data structure, ROSIA achieves feasible operational speed on embedded processors with state-of-the-art performances under different sources of noise. The source code of ROSIA is available at https://github.com/ckchng/ROSIA.Comment: 21 pages, 16 figures, Accepted to IEEE Transactions on Aerospace and Electronic System

    Gaia Data Release 1: Pre-processing and source list creation

    Get PDF
    Context. The first data release from the Gaia mission contains accurate positions and magnitudes for more than a billion sources, and proper motions and parallaxes for the majority of the 2.5 million HIPPARCOS and Tycho-2 stars. Aims. We describe three essential elements of the initial data treatment leading to this catalogue: the image analysis, the construction of a source list, and the near real-time monitoring of the payload health. We also discuss some weak points that set limitations for the attainable precision at the present stage of the mission. Methods. Image parameters for point sources are derived from one-dimensional scans, using a maximum likelihood method, under the assumption of a line spread function constant in time, and a complete modelling of bias and background. These conditions are, however, not completely fulfilled. The Gaia source list is built starting from a large ground-based catalogue, but even so a significant number of new entries have been added, and a large number have been removed. The autonomous onboard star image detection will pick up many spurious images, especially around bright sources, and such unwanted detections must be identified. Another key step of the source list creation consists in arranging the more than 10^(10) individual detections in spatially isolated groups that can be analysed individually. Results. Complete software systems have been built for the Gaia initial data treatment, that manage approximately 50 million focal plane transits daily, giving transit times and fluxes for 500 million individual CCD images to the astrometric and photometric processing chains. The software also carries out a successful and detailed daily monitoring of Gaia health

    SI: The Stellar Imager

    Get PDF
    The ultra-sharp images of the Stellar Imager (SI) will revolutionize our view of many dynamic astrophysical processes: The 0.1 milliarcsec resolution of this deep-space telescope will transform point sources into extended sources, and simple snapshots into spellbinding evolving views. SI s science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI s prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era by imaging a sample of magnetically active stars with enough resolution to map their evolving dynamo patterns and their internal flows. By exploring the Universe at ultra-high resolution, SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled structures and processes in the Universe

    Spiral Tessellation on the Sphere

    Get PDF
    In this paper we describe a tessellation of the unit sphere in the 3-dimensional space realized using a spiral joining the north and the south poles. This tiling yields to a one dimensional labeling of the tiles covering the whole sphere and to a 1-dimensional natural ordering on the set of tiles of the tessellation. The correspondence between a point on the sphere and the tile containing it is derived as an analytical function, allowing the direct computation of the tile. This tessellation exhibits some intrinsic features useful for general applications: absence of singular points and efficient tiles computation. Moreover, this tessellation can be parametrized to obtain additional features especially useful for spherical coordinate indexing: tiles with equal area and good shape uniformity of tiles. An application to spherical indexing of a database is presented, it shows an assessment of our spiral tiling for practical use

    Analysis of Star Identification Algorithms due to Uncompensated Spatial Distortion

    Get PDF
    With the evolution of spacecraft systems, we see the growing need for smaller, more affordable, and robust spacecrafts that can be jettisoned with ease and sent to sites to perform a myriad of operations that a larger craft would prohibit, or that can be quickly manipulated from performing one task into another. The developing requirements have led to the creation of Nano-Satellites, or CubeSats. The question then remains, how to navigate the expanse of space with such a minute spacecraft? A solution to this is using the stars themselves as a means of navigation. This can be accomplished by measuring the distance between stars in a camera image and determining the stars\u27 identities. Once identified, the spacecraft can obtain its position and facing. A series of star identification algorithms called Lost in Space Algorithms (LISAs) are used to recognize the stars in an image and assess the accuracy and error associated with each algorithm. This is done by creating various images from a simulated camera, using a program called MATLAB, along with images of actual stars with uncompensated errors. It is shown how suitable these algorithms are for use in space navigation, what constraints and impediments each have, and if low quality cameras using these algorithms can solve the Lost in Space problem

    Spiral tessellation on the sphere

    Get PDF
    In this paper we describe a tessellation of the unit sphere in the 3-dimensional space realized using a spiral joining the north and the south poles. This tiling yields to a one dimensional labeling of the tiles covering the whole sphere and to a 1-dimensional natural ordering on the set of tiles of the tessellation. The correspondence between a point on the sphere and the tile containing it is derived as an analytical function, allowing the direct computation of the tile. This tessellation exhibits some intrinsic features useful for general applications: absence of singular points and efficient tiles computation. Moreover, this tessellation can be parametrized to obtain additional features especially useful for spherical coordinate indexing: tiles with equal area and good shape uniformity of tiles. An application to spherical indexing of a database is presented, it shows an assessment of our spiral tiling for practical uses

    Universal Verification Platform and Star Simulator for Fast Star Tracker Design

    Get PDF
    Developing star trackers quickly is non-trivial. Achieving reproducible results and comparing different algorithms are also open problems. In this sense, this work proposes the use of synthetic star images (a simulated sky), allied with the standardized structure of the Universal Verification Methodology as the base of a design approach. The aim is to organize the project, speed up the development time by providing a standard verification methodology. Future rework is reduced through two methods: a verification platform that us shared under a free software licence; and the layout of Universal Verification Methodology enforces reusability of code through an object-oriented approach. We propose a black-box structure for the verification platform with standard interfaces, and provide examples showing how this approach can be applied to the development of a star tracker for small satellites, targeting a system-on-a-chip design. The same test benches were applied to both early conceptual software-only implementations, and later optimized software-hardware hybrid systems, in a hardware-in-the-loop configuration. This test bench reuse strategy was interesting also to show the regression test capability of the developed platform. Furthermore, the simulator was used to inject specific noise, in order to evaluate the system under some real-world conditions

    POLA POSISI BERBASIS FUZZY DALAM DOMAIN FREKUENSI UNTUK TEMU KEMBALI CITRA BINTANG

    Get PDF
    AbstrakPenelusuran bintang dilakukan untuk beberapa aplikasi teknologi satelit dan ruang angkasa. Identifikasi bintang merupakan tugas utama dalam penelusuran bintang. Salah satu cara untuk melakukan identifikasi bintang adalah membandingkan citra kamera satelit terhadap citra database dan melakukan temu kembali bintang yang sama. Tugas tersebut menjadi sulit ketika pengambilan citra dilakukan pada waktu atau kondisi yang berbeda. Penelitian ini melakukan temu kembali citra bintang dengan menggunakan keuntungan pada metode pola posisi berbasis Fuzzy dalam domain frekuensi. Pada tahap awal, dilakukan preprocessing. Kemudian dilakukan proses ekstraksi fitur pola bintang menggunakan pola posisi berbasis Fuzzy dalam domain frekuensi. Selanjutnya, dilakukan perhitungan nilai similaritas antar fitur pola bintang. Pada tahap akhir, dilakukan temu kembali citra masukan sesuai tingkat kemiripan fitur citra tersebut dengan fitur citra database. Beberapa pengujian telah dilakukan dengan menggunakan 172 dataset yang didapatkan dari database aplikasi Stellarium. Pengujian pertama dilakukan untuk melakukan temu kembali citra bintang tanpa dipengaruhi adanya perubahan waktu dan kondisi. Pengujian kedua dilakukan untuk melakukan temu kembali citra bintang dengan adanya pengaruh dari perubahan rotasi. Pengujian ketiga dilakukan untuk melakukan temu kembali citra bintang dengan adanya pengaruh waktu pengambilan data. Hasil ujicoba menunjukkan bahwa penelitian ini mampu melakukan temu kembali citra bintang dengan tingkat akurasi sebesar 80.81%.Kata kunci: citra bintang, identifikasi bintang, pola Fuzzy, temu kembali citra
    • …
    corecore