922 research outputs found

    Full-duplex massive MIMO with physical layer network coding for the two-way relay channel

    Get PDF
    The role of interference in wireless networks has recently been profoundly re-thought with the emergence of new techniques for combating it and exploit it to maximize the use efficiency of the physical resources. This paper presents a two-way relay channel using a lattice-based physical layer network coding scheme, a massive MIMO array, and in-band full-duplex, taking into account the residual self-interference that results after applying recently developed cancellation techniques for the loopback interference. The proposed scheme is able to ultimately exchange information across the TWRC in only one time slot, whereas four time slots would be needed in a conventional TWRC. The system's performance is shown to be mostly dependent on the number of antennas at the relay, and also dependent on the channel state information of all the channel matrices, including the one describing the loopback interference at the relay. For base-stations and relays with a few hundred antennas, the proposed scheme is feasible for wireless systems.info:eu-repo/semantics/acceptedVersio

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Full-duplex MIMO and PLNC for the Y-network

    Get PDF
    This paper considers a multi-way wireless network with three terminals which want to exchange or share data with the help of a relay: each terminal has some information that wants to transmit to the other two. The traditional way of doing this exchange either involves time-domain multiplexing (TDMA) or dedicated frequency-domain disjoint channels, at the expense of high bandwidth inefficiency. With the advent of network coding, and later physical-layer network coding, it became possible to reduce the number of time slots required to exchange the information between all the terminals. Moreover, using multiple-input multiple-output (MIMO) terminals and relays, the time-usage efficiency can be further boosted by transferring the burden from the time-domain to the spatial-domain via spatial multiplexing. This paper proposes the concatenation of the aforementioned techniques along with loopback interference cancellation, which recently became a central topic for the next generation of the physical-layer of wireless communications. The paper shows a protocol and techniques that allow all the information exchange between terminals to be reduced from the 6 time-slots, required in traditional TDMA, to one time-slot only, provided that the information packets are not too short. The error performance of this system is shown by means of simulation using MIMO Rayleigh fading channels.info:eu-repo/semantics/acceptedVersio
    corecore