314 research outputs found

    Sliding-mode and proportional-resonant based control strategy for three-phase two-leg T-type grid-connected inverters with LCL filter

    Get PDF
    In this study, sliding-mode and proportional-resonant based control strategy is proposed for three-phase two-leg T-type grid-connected inverter with LCL filter. The sliding surface function is formed by using the inverter current and capacitor voltage errors. When the inverter current and capacitor voltage feedbacks are included into the control loop, the active damping requirement is automatically resolved. The PR controllers are employed in cascaded manner to generate the references for inverter current and capacitor voltage. The use of PR controllers ensures zero steady-state error in the inverter current, capacitor voltage and grid current. In addition, since the proposed three-phase inverter has only two legs, the total switch count is reduced resulting in cheaper and reliable topology. The proposed system is validated through computer simulations which show that proposed control algorithm can achieve the control of grid currents. The total harmonic distortion level of the grid currents is in the limits of international standards

    Transformerless Microinverter with Low Leakage Current Circulation and Low Input Capacitance Requirement for PV Applications

    Get PDF
    The inevitable depletion of limited fossil fuels combined with their harmful footprint on the environment led to a global pursuit for alternative energy sources that are clean and inexhaustible. Renewable energies such as wind, biomass and solar are the best alternative energy candidates, with the latter being more suitable for GCC countries. Besides, the energy generated from photovoltaic (PV) modules is one of the elegant examples of harnessing solar energy, as it is clean, pollutant-free and modular. Furthermore, recent advances in PV technology, especially grid-connected PV systems revealed the preeminence of using multiple small inverters called (Microinverters) over using the conventional single inverter configuration. Specifically, the break-even cost point can be reached faster and the system modularity increases with microinverters usage. Nonetheless, due to microinverter’s small ratings designers prefer transformerless designs because transformer removal achieves higher efficiency and power density. However, the transformer removal results in loss of galvanic isolation that leads to dangerous leakage current circulation that affects system safety. Another issue with microinverters is that since they are installed outside their bulky DC-Link electrolytic capacitor lifetime deteriorates the system reliability because electrolytic capacitor failure rate increases as temperature increases. Moreover, the DC-Link capacitor is used to decouple the 2nd order power harmonic ripples that appear in single-phase systems. Thus, the objective of this thesis is to design an efficient transformerless microinverter that has low leakage current circulation and low input capacitance requirement with a minimum number of active switches. In other words, the objective is to increase the safety and the reliability of the system while maintaining the high efficiency. Eventually, the configuration selected is the transformerless differential buck microinverter with LCL filter and it is modeled with passive resonance damping and active resonance damping control

    Hysteretic control of grid-side current for a single-phase LCL grid-connected voltage source converter

    Get PDF
    © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper proposes a new approach to control the grid-side current of LCL-grid connected voltage source converters using hysteretic relay feedback controllers. The closed loop system is stabilized by designing a local feedback around the relay element. The compensator allows the use of relay feedback controllers by making the controlled plant almost strictly positive real. The article proposes the use of the locus of the perturbed relay system as analysis and design tool and studies orbital stability for several plant and controller conditions. The approach is validated by means of simulation testing.Postprint (author's final draft

    Stability Analysis and Performance Optimization for the Multi-Parallel Grid inverters System

    Get PDF

    Modulation and Control Techniques for Performance Improvement of Micro Grid Tie Inverters

    Get PDF
    The concept of microgrids is a new building block of smart grid that acts as a single controllable entity which allows reliable interconnection of distributed energy resources and loads and provides alternative way of their integration into power system. Due to its specifics, microgrids require different control strategies and dynamics of regulation as compared to ones used in conventional utility grids. All types of power converters used in microgrid share commonalities which potentially affect high frequency modes of microgrid in same manner. There are numerous unique design requirements imposed on microgrid tie inverters, which are dictated by the nature of the microgrid system and bring major challenges that are reviewed and further analyzed in this work. This work introduces, performs a detailed study on, and implements nonconventional control and modulation techniques leading to performance improvement of microgrid tie inverters in respect to aforementioned challenges

    Mitigation of Grid-Current Distortion for LCL-Filtered Voltage-Source Inverter with Inverter-Current Feedback Control

    Get PDF
    LCL filters feature low inductance; thus, the injected grid current from an LCL -filtered voltage-source inverter can be easily distorted by grid-voltage harmonics. This problem is especially tough for the control system with inverter-side current feedback (ICF), since the grid-current harmonics can freely flow into the filter capacitor. In this case, because of the loss of harmonic information, traditional harmonic controllers fail to mitigate the grid-current distortion. Although this problem may be avoided using the grid-voltage feedforward scheme, the required differentiators may cause the noise amplification. In light of the above issue, this paper develops a simple method for the ICF control system to mitigate the grid-current harmonics without extra sensors. In the proposed method, resonant harmonic controllers and an additional compensation loop are adopted at the same time. The potential instability introduced by the compensation loop can be avoided through a special design of the compensation position. Finally, the effectiveness of the proposed method for harmonic rejection is verified by detailed experimental results

    Enhanced performance controller for high power wind converters connected to weak grids

    Get PDF
    This study proposes a control scheme for high power grid-connected wind power converters, which is oriented to enhance their performance when connected to weak grids with low short circuit ratio. The proposed controller consists of an outer current reference generation loop and an inner current loop, working in stationary reference frame. In the outer loop, the current reference is calculated to comply simultaneously with the grid code requirements, the control of the DC link, and the operational safety margins of the converter during faulty conditions. On the other hand, the proposed inner current loop consists of a proportional resonant controller, a capacitor voltage feedforward and a phase shifter. Moreover, simulation results considering different weak grid conditions, as well as experimental results of a full-scale 4 MW converter test-bench are presented to validate the good performance of the proposed method.This work has been partially suported by the Spanish Ministry of Science and Universities under the code RTI2018-100921-B-C21 and Tecniospring programme under the code TECSPR16-1-006.Peer ReviewedPostprint (published version
    corecore