15,768 research outputs found

    Full duplex 60 GHz millimeter wave transmission over multi-mode fiber

    Get PDF
    Copyright @ 2010 IEEENew wireless subscribers are signing up at an increasing demand of more capacity for ultra-high data rate transfers at speeds more than 1 Gbps, while the radio spectrum is limited. Millimeter wave communication system offers a unique way to resolve these problems. In this paper, the performance of a full duplex transportation system is reported for 1.5 Km of multi-mode fiber length for a sample 10 Gbit/s pseudo random sequence data, with quadrature amplitude modulation mapping and orthogonal frequency division multiplexing modulation with 60 GHz RF and coherent 1550 nm optical carrier. The analysis and simulation results show that the system's quality of service depends on nonlinearity of electro optical modulator, dispersion and signal attenuation impairment of the multi-mode fiber cable

    Modeling and characterization of VCSEL-based avionics full-duplex ethernet (AFDX) gigabit links

    Get PDF
    Low cost and intrinsic performances of 850 nm Vertical Cavity Surface Emitting Lasers (VCSELs) compared to Light Emitting Diodes make them very attractive for high speed and short distances data communication links through optical fibers. Weight saving and Electromagnetic Interference withstanding requirements have led to the need of a reliable solution to improve existing avionics high speed buses (e.g. AFDX) up to 1Gbps over 100m. To predict and optimize the performance of the link, the physical behavior of the VCSEL must be well understood. First, a theoretical study is performed through the rate equations adapted to VCSEL in large signal modulation. Averaged turn-on delays and oscillation effects are analytically computed and analyzed for different values of the on - and off state currents. This will affect the eye pattern, timing jitter and Bit Error Rate (BER) of the signal that must remain within IEEE 802.3 standard limits. In particular, the off-state current is minimized below the threshold to allow the highest possible Extinction Ratio. At this level, the spontaneous emission is dominating and leads to significant turn-on delay, turn-on jitter and bit pattern effects. Also, the transverse multimode behavior of VCSELs, caused by Spatial Hole Burning leads to some dispersion in the fiber and degradation of BER. VCSEL to Multimode Fiber coupling model is provided for prediction and optimization of modal dispersion. Lastly, turn-on delay measurements are performed on a real mock-up and results are compared with calculations

    RCFD: A Novel Channel Access Scheme for Full-Duplex Wireless Networks Based on Contention in Time and Frequency Domains

    Get PDF
    In the last years, the advancements in signal processing and integrated circuits technology allowed several research groups to develop working prototypes of in-band full-duplex wireless systems. The introduction of such a revolutionary concept is promising in terms of increasing network performance, but at the same time poses several new challenges, especially at the MAC layer. Consequently, innovative channel access strategies are needed to exploit the opportunities provided by full-duplex while dealing with the increased complexity derived from its adoption. In this direction, this paper proposes RTS/CTS in the Frequency Domain (RCFD), a MAC layer scheme for full-duplex ad hoc wireless networks, based on the idea of time-frequency channel contention. According to this approach, different OFDM subcarriers are used to coordinate how nodes access the shared medium. The proposed scheme leads to efficient transmission scheduling with the result of avoiding collisions and exploiting full-duplex opportunities. The considerable performance improvements with respect to standard and state-of-the-art MAC protocols for wireless networks are highlighted through both theoretical analysis and network simulations.Comment: Submitted at IEEE Transactions on Mobile Computing. arXiv admin note: text overlap with arXiv:1605.0971
    • 

    corecore