10 research outputs found

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Full-Duplex Massive MIMO Relaying Systems with Low-Resolution ADCs

    Get PDF
    International audienceThis paper considers a multipair amplify-and-forward massive MIMO relaying system with low-resolution analog-to-digital converters (ADCs) at both the relay and destinations. The channel state information (CSI) at the relay is obtained via pilot training, which is then utilized to perform simple maximum-ratio combining/maximum-ratio transmission processing by the relay. Also, it is assumed that the destinations use statistical CSI to decode the transmitted signals. Exact and approximated closed-form expressions for the achievable sum rate are presented, which enable the efficient evaluation of the impact of key system parameters on the system performance. In addition, optimal relay power allocation scheme is studied, and power scaling law is characterized. It is found that, with only low-resolution ADCs at the relay, increasing the number of relay antennas is an effective method to compensate for the rate loss caused by coarse quantization. However, it becomes ineffective to handle the detrimental effect of low-resolution ADCs at the destination. Moreover, it is shown that deploying massive relay antenna arrays can still bring significant power savings, i.e., the transmit power of each source can be cut down proportional to 1/M to maintain a constant rate, where M is the number of relay antennas

    Low-complexity antenna selection techniques for massive MIMO systems

    Get PDF
    PhD ThesisMassive Multiple-Input Multiple-Output (M-MIMO) is a state of the art technology in wireless communications, where hundreds of antennas are exploited at the base station (BS) to serve a much smaller number of users. Employing large antenna arrays can improve the performance dramatically in terms of the achievable rates and radiated energy, however, it comes at the price of increased cost, complexity, and power consumption. To reduce the hardware complexity and cost, while maintaining the advantages of M-MIMO, antenna selection (AS) techniques can be applied where only a subset of the available antennas at the BS are selected. Optimal AS can be obtained through exhaustive search, which is suitable for conventional MIMO systems, but is prohibited for systems with hundreds of antennas due to its enormous computational complexity. Therefore, this thesis address the problem of designing low complexity AS algorithms for multi-user (MU) M-MIMO systems. In chapter 3, different evolutionary algorithms including bio-inspired, quantuminspired, and heuristic methods are applied for AS in uplink MU M-MIMO systems. It was demonstrated that quantum-inspired and heuristic methods outperform the bio-inspired techniques in terms of both complexity and performance. In chapter 4, a downlink MU M-MIMO scenario is considered with Matched Filter (MF) precoding. Two novel AS algorithms are proposed where the antennas are selected without any vector multiplications, which resulted in a dramatic complexity reduction. The proposed algorithms outperform the case where all antennas are activated, in terms of both energy and spectral efficiencies. In chapter 5, three AS algorithms are designed and utilized to enhance the performance of cell-edge users, alongside Max-Min power allocation control. The algorithms aim to either maximize the channel gain, or minimize the interference for the worst-case user only. The proposed methods in this thesis are compared with other low complexity AS schemes and showed a great performance-complexity trade-off

    Nonorthogonal Multiple Access for 5G and Beyond

    Get PDF
    This work was supported in part by the U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/N029720/1 and Grant EP/N029720/2. The work of L. Hanzo was supported by the ERC Advanced Fellow Grant Beam-me-up

    Future cellular systems: fundamentals and the role of large antenna arrays

    Get PDF
    In this thesis, we analyze the performance of three promising technologies being considered for future fifth generation (5G) and beyond wireless communication systems, with primary goals to: i) render 10-100 times higher user data rate, ii) serve 10-100 times more users simultaneously, iii) 1000 times more data volume per unit area, iv) improve energy efficiency on the order of 100 times, and iv) provide higher bandwidths. Accordingly, we focus on massive multiple-input multiple-output (MIMO) systems and other future wireless technologies, namely millimeter wave (mmWave) and full-duplex (FD) systems that are being considered to fulfill the above requirements. We begin by focusing on fundamental performance limits of massive MIMO systems under practical constraints such as low complexity processing, array size and limited physical space. First, we analyze the performance of a massive MIMO base station (BS) serving spatially distributed multi-antenna users within a fixed coverage area. Stochastic geometry is used to characterize the spatially distributed users while large dimensional random matrix theory is used to achieve deterministic approximations of the sum rate of the system. We then examine the deployment of a massive MIMO BS and the resulting energy efficiency (EE) by considering a more realistic set-up of a rectangular array with increasing antenna elements within a fixed physical space. The effects of mutual coupling and correlation among the BS antennas are incorporated by deriving a practical mutual coupling matrix which considers coupling among all antenna elements within the BS. Accordingly, the optimum number of antennas that can be deployed for a particular antenna spacing when EE is considered as a design criteria is derived. Also, it is found that mutual coupling effect reduces the EE of the massive system by around 40-45% depending on the precoder/receiver used and the physical space available for antenna deployment. After establishing the constraints of antenna spacing on massive MIMO systems for the current microwave spectrum, we shift our focus to mmWave frequencies (more than 100GHz available bandwidth), where the wavelength is very small and as a result more antennas can be rigged within a constrained space. Accordingly, we integrate the massive MIMO technology with mmWave networks. In particular, we analyze the performance of a mmWave network consisting of spatially distributed BS equipped with very large uniform circular arrays (UCA) serving spatially distributed users within a fixed coverage area. The use of UCA is due to its capability of scanning through both the azimuth as well as elevation dimensions. We show that using such 3D massive MIMO techniques in mmWave systems yield significant performance gains. Further, we show the effect of blockages and path loss on mmWave networks. Since blockages are found to be quite detrimental to mmWave networks, we create alternative propagation paths with the aid of relays. In particular, we consider the deployment of relays in outdoor mmWave networks and then derive expressions for the coverage probability and transmission capacity from sources to a destination for such relay aided mmWave networks using stochastic geometric tools. Overall, relay aided mmWave transmission is seen to improve the signal to noise ratio at the destination by around 5-10dB with respect to specific coverage probabilities. Finally, due to the fact that the current half duplex (HD) mode transmission only utilizes half the spectrum at the same time in the same frequency, we consider a multiuser MIMO cellular system, where a FD BS serves multiple HD users simultaneously. However, since FD systems are plagued by severe self-interference (SI), we focus on the design of robust transceivers, which can cancel the residual SI left after antenna and analog cancellations. In particular, we address the sum mean-squared-errors (MSE) minimization problem by transforming it into an equivalent semidefinite programming (SDP) problem. We propose iterative alternating algorithms to design the transceiver matrices jointly and accordingly show the gains of FD over HD systems. We show that with proper SI cancellation, it is possible to achieve gains on sum rate of up to 70-80% over HD systems

    The Interplay between Computation and Communication

    Get PDF
    In this thesis, a comprehensive exploration into the integration of communication and learning within the massive Internet of Things (mIoT) is undertaken. Addressing one of the fundamental challenges of mIoT, where traditional channel estimation methods prove inefficient due to high device density and short packets; initially, a novel approach leveraging unsupervised machine learning for joint channel estimation and signal detection is proposed. This technique utilizes the Gaussian mixture model (GMM) clustering of received signals, thereby reducing the necessity for exhaustive channel estimation, decreasing the number of required pilot symbols, and enhancing symbol error rate (SER) performance. Building on this foundation, an innovative method is proposed that eliminates the need for pilot symbols entirely. By coupling GMM clustering with rotational invariant (RI) coding, the model maintains robust performance against the effects of channel rotation, thereby improving the efficiency of mIoT systems. This research delves further into integrating communication and learning in mIoT, specifically focusing on federated learning (FL) convergence under error-prone conditions. It carefully analyzes the impact of factors like block length, coding rate, and signal-to-noise ratio on FL's accuracy and convergence. A novel approach is proposed to address communication error challenges, where the base station (BS) uses memory to cache key parameters. Closing the thesis, an extensive simulation of a real-world mIoT system, integrating previously developed techniques, such as the innovative channel estimation method, RI coding, and the introduced FL model. It notably demonstrates that optimal learning outcomes can be achieved even without stringent communication reliability. Thus, this work not only achieves comparable or superior performance to traditional methods with fewer pilot symbols but also provides valuable insights for optimizing mIoT systems within the FL framework

    Design of static intercell interference coordination schemes for realistic lte-based cellular networks

    Get PDF
    Today, 3.5 and 4G systems including Long Term Evolution (LTE) and LTE-Advanced (LTE-A) support packet-based services and provide mobile broadband access for bandwidth-hungry applications. In this context of fast evolution, new and challenging technical issues must be e ectively addressed. The nal target is to achieve a signi cant step forward toward the improvement of the Quality of Experience (QoE). To that end, interference management has been recognized by the industry as a key enabler for cellular technologies based on OFDMA. Indeed, with a low frequency reuse factor, intercell interference (ICI) becomes a major concern since the Quality of Service (QoS) is not uniformly delivered across the network, it remarkably depends on user position. Hence, cell edge performance is an important issue in LTE and LTE-A. Intercell Interference Coordination (ICIC) encompasses strategies whose goal is to keep ICI at cell edges as low as possible. This alleviates the aforementioned situation. For this reason, the novelties presented in this Ph.D. thesis include not only developments of static ICIC mechanisms for data and control channels, but also e orts towards further improvements of the energy e ciency perspective. Based on a comprehensive review of the state of the art, a set of research opportunities were identi ed. To be precise, the need for exible performance evaluation methods and optimization frameworks for static ICIC strategies. These mechanisms are grouped in two families: the schemes that de ne constraints on the frequency domain and the ones that propose adjustments on the power levels. Thus, Soft- and Fractional Frequency Reuse (SFR and FFR, respectively) are identi ed as the base of the vast majority of static ICIC proposals. Consequently, during the rst part of this Ph.D. thesis, interesting insights into the operation of SFR and FFR were identi ed beyond well-known facts. These studies allow for the development of a novel statistical framework to evaluate the performance of these schemes in realistic deployments. As a result of the analysis, the poor performance of classic con gurations of SFR and FFR in real-world contexts is shown, and hence, the need for optimization is established. In addition, the importance of the interworking between static ICIC schemes and other network functionalities such as CSI feedback has also been identi ed. Therefore, novel CSI feedback schemes, suitable to operate in conjunction with SFR and FFR, have been developed. These mechanisms exploit the resource allocation pattern of these static ICIC techniques in order to improve the accuracy of the CSI feedback process. The second part is focused on the optimization of SFR and FFR. The use of multiobjective techniques is investigated as a tool to achieve e ective network-speci c optimization. The approach o ers interesting advantages. On the one hand, it allows for simultaneous optimization of several con icting criteria. On the other hand, the multiobjective nature results in outputs composed of several high quality (Pareto e cient) network con gurations, all of them featuring a near-optimal tradeo between the performance criteria. Multiobjective evolutionary algorithms allow employing complex mathematical structures without the need for relaxation, thus capturing accurately the system behavior in terms of ICI. The multiobjective optimization formulation of the problem aims at achieving e ective adjustment of the operational parameters of SFR and FFR both at cell level and network-wide. Moreover, the research was successfully extended to the control channels, both the PDCCH and ePDCCH. Finally, in an e ort to further improve the network energy e ciency (an aspect always considered throughout the thesis), the framework of Cell Switch O (CSO), having close connections with ICIC, is also introduced. By means of the proposed method, signi cant improvements with respect to traditional approaches, baseline con gurations, and previous proposals can be achieved. The gains are obtained in terms of energy consumption, network capacity, and cell edge performance.Actualmente los sistemas 3.5 y 4G tales como Long Term Evolution (LTE) y LTE-Advanced (LTE-A) soportan servicios basados en paquetes y proporcionan acceso de banda ancha m ovil para aplicaciones que requieren elevadas tasas de transmisi on. En este contexto de r apida evoluci on, aparecen nuevos retos t ecnicos que deben ser resueltos e cientemente. El objetivo ultimo es conseguir un salto cualitativo importante en la experiencia de usuario (QoE). Con tal n, un factor clave que ha sido reconocido en las redes celulares basadas en Orthogonal Frequency- Division Multiple Access (OFDMA) es la gesti on de interferencias. De hecho, la utilizaci on de un factor de reuso bajo permite una elevada e ciencia espectral pero a costa de una distribuci on de la calidad de servicio (QoS) que no es uniforme en la red, depende de la posici on del usuario. Por lo tanto, el rendimiento en los l mites de la celda se ve muy penalizado y es un problema importante a resolver en LTE y LTE-A. La coordinaci on de interferencias entre celdas (ICIC, del ingl es Intercell Interfe- rence Coordination) engloba las estrategias cuyo objetivo es mantener la interferencia intercelular (ICI) lo m as baja posible en los bordes de celda. Esto permite aliviar la situaci on antes mencionada. La contribuci on presentada en esta tesis doctoral incluye el dise~no de nuevos mecanismos de ICIC est atica para los canales de datos y control, as como tambi en mejoras desde el punto de vista de e ciencia energ etica. A partir de una revisi on completa del estado del arte, se identi caron una serie de retos abiertos que requer an esfuerzos de investigaci on. En concreto, la necesidad de m etodos de evaluaci on exibles y marcos de optimizaci on de las estrategias de ICIC est aticas. Estos mecanismos se agrupan en dos familias: los esquemas que de nen restricciones sobre el dominio de la frecuencia y los que proponen ajustes en los niveles de potencia. Es decir, la base de la gran mayor a de propuestas ICIC est aticas son la reutilizaci on de frecuencias de tipo soft y fraccional (SFR y FFR, respectivamente). De este modo, durante la primera parte de esta tesis doctoral, se han estudiado los aspectos m as importantes del funcionamiento de SFR y FFR, haciendo especial enfasis en las conclusiones que van m as all a de las bien conocidas. Ello ha permitido introducir un nuevo marco estad stico para evaluar el funcionamiento de estos sistemas en condiciones de despliegue reales. Como resultado de estos an alisis, se muestra el pobre desempe~no de SFR y FFR en despliegues reales cuando funcionan con sus con guraciones cl asicas y se establece la necesidad de optimizaci on. Tambi en se pone de mani esto la importancia del funcionamiento conjunto entre esquemas ICIC est aticos y otras funcionalidades de la red radio, tales como la informaci on que env an los usuarios sobre el estado de su canal downlink (feedback del CSI, del ingl es Channel State Information). De este modo, se han propuesto diferentes esquemas de feedback apropiados para trabajar conjuntamente con SFR y FFR. Estos mecanismos explotan el patr on de asignaci on de recursos que se utiliza en ICIC est atico para mejorar la precisi on del proceso. La segunda parte se centra en la optimizaci on de SFR y FFR. Se ha investigado el uso de t ecnicas multiobjetivo como herramienta para lograr una optimizaci on e caz, que es espec ca para cada red. El enfoque ofrece ventajas interesantes, por un lado, se permite la optimizaci on simult anea de varios criterios contradictorios. Por otro lado, la naturaleza multiobjetivo implica obtener como resultado con guraciones de red de elevada calidad (Pareto e cientes), todas ellas con un equilibrio casi- optimo entre las diferentes m etricas de rendimiento. Los algoritmos evolucionarios multiobjetivo permiten la utilizaci on de estructuras matem aticas complejas sin necesidad de relajar el problema, de este modo capturan adecuadamente su comportamiento en t erminos de ICI. La formulaci on multiobjetivo consigue un ajuste efectivo de los par ametros operacionales de SFR y FFR, tanto a nivel de celda como a nivel de red. Adem as, la investigaci on se extiende con resultados satisfactorios a los canales de control, PDCCH y ePDCCH. Finalmente, en un esfuerzo por mejorar la e ciencia energ etica de la red (un aspecto siempre considerado a lo largo de la tesis), se introduce en el an alisis global el apagado inteligente de celdas, estrategia con estrechos v nculos con ICIC. A trav es del m etodo propuesto, se obtienen mejoras signi cativas con respecto a los enfoques tradicionales y propuestas previas. Las ganancias se obtienen en t erminos de consumo energ etico, capacidad de la red, y rendimiento en el l mite de las celdas.Actualment els sistemes 3.5 i 4G tals com Long Term Evolution (LTE) i LTE- Advanced (LTE-A) suporten serveis basats en paquets i proporcionen acc es de banda ampla m obil per a aplicacions que requereixen elevades taxes de transmissi o. En aquest context de r apida evoluci o, apareixen nous reptes t ecnics que han de ser resolts e cientment. L'objectiu ultim es aconseguir un salt qualitatiu important en l'experi encia d'usuari (QoE). Amb tal , un factor clau que ha estat reconegut a les xarxes cel lulars basades en Orthogonal Frequency-Division Multiple Access (OFDMA) es la gesti o d'interfer encies. De fet, la utilizaci o d'un factor de re us baix permet una elevada e ci encia espectral per o a costa d'una distribuci o de la qualitat de servei (QoS) que no es uniforme a la xarxa, dep en de la posici o de l'usuari. Per tant, el rendiment en els l mits de la cel la es veu molt penalitzat i es un problema important a resoldre en LTE i LTE-A. La coordinaci o d'interfer encies entre cel les (ICIC, de l'angl es Intercell Interfe- rence Coordination) engloba les estrat egies que tenen com a objectiu mantenir la interfer encia intercel lular (ICI) el m es baixa possible en les vores de la cel la. Aix o permet alleujar la situaci o abans esmentada. La contribuci o presentada en aquesta tesi doctoral inclou el disseny de nous mecanismes de ICIC est atica per als canals de dades i control, aix com tamb e millores des del punt de vista d'e ci encia energ etica. A partir d'una revisi o completa de l'estat de l'art, es van identi car una s erie de reptes oberts que requerien esfor cos de recerca. En concret, la necessitat de m etodes d'avaluaci o exibles i marcs d'optimitzaci o de les estrat egies de ICIC est atiques. Aquests mecanismes s'agrupen en dues fam lies: els esquemes que de neixen restriccions sobre el domini de la freq u encia i els que proposen ajustos en els nivells de pot encia. Es a dir, la base de la gran majoria de propostes ICIC est atiques s on la reutilitzaci o de freq u encies de tipus soft i fraccional (SFR i FFR, respectivament). D'aquesta manera, durant la primera part d'aquesta tesi doctoral, s'han estudiat els aspectes m es importants del funcionament de SFR i FFR, fent especial emfasi en les conclusions que van m es enll a de les ben conegudes. Aix o ha perm es introduir un nou marc estad stic per avaluar el funcionament d'aquests sistemes en condicions de desplegament reals. Com a resultat d'aquestes an alisis, es mostra el pobre acompliment de SFR i FFR en desplegaments reals quan funcionen amb les seves con guracions cl assiques i s'estableix la necessitat d'optimitzaci o. Tamb e es posa de manifest la import ancia del funcionament conjunt entre esquemes ICIC est atics i altres funcionalitats de la xarxa radio, tals com la informaci o que envien els usuaris sobre l'estat del seu canal downlink (feedback del CSI, de l'angl es Channel State Information). D'aquesta manera, s'han proposat diferents esquemes de feedback apropiats per treballar conjuntament amb SFR i FFR. Aquests mecanismes exploten el patr o d'assignaci o de recursos que s'utilitza en ICIC est atic per millorar la precisi o del proc es. La segona part se centra en l'optimitzaci o de SFR i FFR. S'ha investigat l' us de t ecniques multiobjectiu com a eina per aconseguir una optimitzaci o e ca c, que es espec ca per a cada xarxa. L'enfocament ofereix avantatges interessants, d'una banda, es permet l'optimitzaci o simult ania de diversos criteris contradictoris. D'altra banda, la naturalesa multiobjectiu implica obtenir com resultat con guracions de xarxa d'elevada qualitat (Pareto e cients), totes elles amb un equilibri gaireb e optim entre les diferents m etriques de rendiment. Els algorismes evolucionaris multiobjectiu permeten la utilitzaci o d'estructures matem atiques complexes sense necessitat de relaxar el problema, d'aquesta manera capturen adequadament el seu comportament en termes de ICI. La formulaci o multiobjectiu aconsegueix un ajust efectiu dels par ametres operacionals de SFR i FFR, tant a nivell de cel la com a nivell de xarxa. A m es, la recerca s'est en amb resultats satisfactoris als canals de control, PDCCH i ePDCCH. Finalment, en un esfor c per millorar l'e ci encia energ etica de la xarxa (un aspecte sempre considerat al llarg de la tesi), s'introdueix en l'an alisi global l'apagat intel ligent de cel les, estrat egia amb estrets vincles amb ICIC. Mitjan cant el m etode proposat, s'obtenen millores signi catives pel que fa als enfocaments tradicionals i propostes pr evies. Els guanys s'obtenen en termes de consum energ etic, capacitat de la xarxa, i rendiment en el l mit de les cel les
    corecore