2,444 research outputs found

    Seven strategies for tolerating highly defective fabrication

    Get PDF
    In this article we present an architecture that supports fine-grained sparing and resource matching. The base logic structure is a set of interconnected PLAs. The PLAs and their interconnections consist of large arrays of interchangeable nanowires, which serve as programmable product and sum terms and as programmable interconnect links. Each nanowire can have several defective programmable junctions. We can test nanowires for functionality and use only the subset that provides appropriate conductivity and electrical characteristics. We then perform a matching between nanowire junction programmability and application logic needs to use almost all the nanowires even though most of them have defective junctions. We employ seven high-level strategies to achieve this level of defect tolerance

    An Energy and Performance Exploration of Network-on-Chip Architectures

    Get PDF
    In this paper, we explore the designs of a circuit-switched router, a wormhole router, a quality-of-service (QoS) supporting virtual channel router and a speculative virtual channel router and accurately evaluate the energy-performance tradeoffs they offer. Power results from the designs placed and routed in a 90-nm CMOS process show that all the architectures dissipate significant idle state power. The additional energy required to route a packet through the router is then shown to be dominated by the data path. This leads to the key result that, if this trend continues, the use of more elaborate control can be justified and will not be immediately limited by the energy budget. A performance analysis also shows that dynamic resource allocation leads to the lowest network latencies, while static allocation may be used to meet QoS goals. Combining the power and performance figures then allows an energy-latency product to be calculated to judge the efficiency of each of the networks. The speculative virtual channel router was shown to have a very similar efficiency to the wormhole router, while providing a better performance, supporting its use for general purpose designs. Finally, area metrics are also presented to allow a comparison of implementation costs

    Unidirectional sub-diffraction waveguiding based on optical spin-orbit coupling in subwavelength plasmonic waveguides

    Full text link
    Subwavelength plasmonic waveguides show the unique ability of strongly localizing (down to the nanoscale) and guiding light. These structures are intrinsically two-way optical communication channels, providing two opposite light propagation directions. As a consequence, when light is coupled to these planar integrated devices directly from the top (or bottom) surface using strongly focused beams, it is equally shared into the two opposite propagation directions. Here, we show that symmetry can be broken by using incident circularly polarized light, on the basis of a spin-orbital angular momentum transfer directly within waveguide bends. We predict that up to 94 \% of the incoupled light is directed into a single propagation channel of a gap plasmon waveguide. Unidirectional propagation of strongly localized optical energy, far beyond the diffraction limit, becomes switchable by polarization, with no need of intermediate nano-antennas/scatterers as light directors. This study may open new perspectives in a large panel of scientific domains, such as nanophotonic circuitry, routing and sorting, optical nanosensing, nano-optical trapping and manipulation

    Modeling of thermally induced skew variations in clock distribution network

    Get PDF
    Clock distribution network is sensitive to large thermal gradients on the die as the performance of both clock buffers and interconnects are affected by temperature. A robust clock network design relies on the accurate analysis of clock skew subject to temperature variations. In this work, we address the problem of thermally induced clock skew modeling in nanometer CMOS technologies. The complex thermal behavior of both buffers and interconnects are taken into account. In addition, our characterization of the temperature effect on buffers and interconnects provides valuable insight to designers about the potential impact of thermal variations on clock networks. The use of industrial standard data format in the interface allows our tool to be easily integrated into existing design flow

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    Advanced routing in changing technology landscape

    Get PDF
    As process technology continue to advance, the operating en-vironment for routing tools has changed significantly. While the general concept of routing and techniques employed re-main the same, the complexities and challenges that modern-day routers face are not well understood or addressed by the research community. In this paper, we will examine a handful of interesting nanometer effects that have significant impact on the behavior of routers, and discuss several op-portunities in which routers can play a more important role in improving the manufacturability of nanometer designs
    • 

    corecore