3,187 research outputs found

    Full abstraction for fair testing in CCS

    Get PDF
    In previous work with Pous, we defined a semantics for CCS which may both be viewed as an innocent presheaf semantics and as a concurrent game semantics. It is here proved that a behavioural equivalence induced by this semantics on CCS processes is fully abstract for fair testing equivalence. The proof relies on a new algebraic notion called playground, which represents the 'rule of the game'. From any playground, two languages, equipped with labelled transition systems, are derived, as well as a strong, functional bisimulation between them.Comment: 15 pages, to appear in CALCO '13. To appear Lecture notes in computer science (2013

    Full abstraction for fair testing in CCS (expanded version)

    Get PDF
    In previous work with Pous, we defined a semantics for CCS which may both be viewed as an innocent form of presheaf semantics and as a concurrent form of game semantics. We define in this setting an analogue of fair testing equivalence, which we prove fully abstract w.r.t. standard fair testing equivalence. The proof relies on a new algebraic notion called playground, which represents the `rule of the game'. From any playground, we derive two languages equipped with labelled transition systems, as well as a strong, functional bisimulation between them.Comment: 80 page

    Full abstraction for fair testing in CCS (expanded version)

    Full text link

    Explicit fairness in testing semantics

    Get PDF
    In this paper we investigate fair computations in the pi-calculus. Following Costa and Stirling's approach for CCS-like languages, we consider a method to label process actions in order to filter out unfair computations. We contrast the existing fair-testing notion with those that naturally arise by imposing weak and strong fairness. This comparison provides insight about the expressiveness of the various `fair' testing semantics and about their discriminating power.Comment: 27 pages, 1 figure, appeared in LMC

    Contexts, refinement and determinism

    Get PDF
    In this paper we have been influenced by those who take an “engineering view” of the problem of designing systems, i.e. a view that is motivated by what someone designing a real system will be concerned with, and what questions will arise as they work on their design. Specifically, we have borrowed from the testing work of Hennessy, de Nicola and van Glabbeek, e.g. [13, 5, 21, 40, 39]. Here we concentrate on one fundamental part of the engineering view and where consideration of it leads. The aspects we are concerned with are computational entities in contexts, observed by users. This leads to formalising design steps that are often left informal, and that in turn gives insights into non-determinism and ultimately leads to being able to use refinement in situations where existing techniques fail
    corecore