22,648 research outputs found

    User Selection and Power Allocation in Full Duplex Multi-Cell Networks

    Full text link
    Full duplex (FD) communications has the potential to double the capacity of a half duplex (HD) system at the link level. However, in a cellular network, FD operation is not a straightforward extension of half duplex operations. The increased interference due to a large number of simultaneous transmissions in FD operation and realtime traffic conditions limits the capacity improvement. Realizing the potential of FD requires careful coordination of resource allocation among the cells as well as within the cell. In this paper, we propose a distributed resource allocation, i.e., joint user selection and power allocation for a FD multi-cell system, assuming FD base stations (BSs) and HD user equipment (UEs). Due to the complexity of finding the globally optimum solution, a sub-optimal solution for UE selection, and a novel geometric programming based solution for power allocation, are proposed. The proposed distributed approach converges quickly and performs almost as well as a centralized solution, but with much lower signaling overhead. It provides a hybrid scheduling policy which allows FD operations whenever it is advantageous, but otherwise defaults to HD operation. We focus on small cell systems because they are more suitable for FD operation, given practical self-interference cancellation limits.With practical self-interference cancellation, it is shown that the proposed hybrid FD system achieves nearly two times throughput improvement for an indoor multi-cell scenario, and about 65% improvement for an outdoor multi-cell scenario compared to the HD system.Comment: 15 pages, to be published in IEEE Transactions on Vehicular Technology, 2016. arXiv admin note: text overlap with arXiv:1412.870

    Full-Duplex Communications: Performance in Ultra-Dense Small-Cell Wireless Networks

    Full text link
    Theoretically, full-duplex (FD) communications can double the spectral-efficiency (SE) of a wireless link if the problem of self-interference (SI) is completely eliminated. Recent developments towards SI cancellation techniques have allowed to realize the FD communications on low-power transceivers, such as small-cell (SC) base stations. Consequently, the FD technology is being considered as a key enabler of 5G and beyond networks. In the context of 5G, FD communications have been initially investigated in a single SC and then into multiple SC environments. Due to FD operations, a single SC faces residual SI and intra-cell co-channel interference (CCI), whereas multiple SCs face additional inter-cell CCI, which grows with the number of neighboring cells. The surge of interference in the multi-cell environment poses the question of the feasibility of FD communications. In this article, we first review the FD communications in single and multiple SC environments and then provide the state-of-the-art for the CCI mitigation techniques, as well as FD feasibility studies in a multi-cell environment. Further, through numerical simulations, the SE performance gain of the FD communications in ultra-dense massive multiple input multiple-output enabled millimeter wave SCs is presented. Finally, potential open research challenges of multi-cell FD communications are highlighted.Comment: Accepted for publication in IEEE Vehicular Technology Magazine, Special Issue on 5G Technologies and Application

    SoftNull: Many-Antenna Full-Duplex Wireless via Digital Beamforming

    Full text link
    In this paper, we present and study a digital-controlled method, called SoftNull, to enable full-duplex in many-antenna systems. Unlike most designs that rely on analog cancelers to suppress self-interference, SoftNull relies on digital transmit beamforming to reduce self-interference. SoftNull does not attempt to perfectly null self-interference, but instead seeks to reduce self-interference sufficiently to prevent swamping the receiver's dynamic range. Residual self-interference is then cancelled digitally by the receiver. We evaluate the performance of SoftNull using measurements from a 72-element antenna array in both indoor and outdoor environments. We find that SoftNull can significantly outperform half-duplex for small cells operating in the many-antenna regime, where the number of antennas is many more than the number of users served simultaneously

    Throughput and Coverage for a Mixed Full and Half Duplex Small Cell Network

    Full text link
    Recent advances in self-interference cancellation enable radios to transmit and receive on the same frequency at the same time. Such a full duplex radio is being considered as a potential candidate for the next generation of wireless networks due to its ability to increase the spectral efficiency of wireless systems. In this paper, the performance of full duplex radio in small cellular systems is analyzed by assuming full duplex capable base stations and half duplex user equipment. However, using only full duplex base stations increases interference leading to outage. We therefore propose a mixed multi-cell system, composed of full duplex and half duplex cells. A stochastic geometry based model of the proposed mixed system is provided, which allows us to derive the outage and area spectral efficiency of such a system. The effect of full duplex cells on the performance of the mixed system is presented under different network parameter settings. We show that the fraction of cells that have full duplex base stations can be used as a design parameter by the network operator to target an optimal tradeoff between area spectral efficiency and outage in a mixed system.Comment: 9 Pages, a short version of this paper has been accepted in ICC 201

    Analysis of Massive MIMO-Enabled Downlink Wireless Backhauling for Full-Duplex Small Cells

    Full text link
    Using tools from stochastic geometry, we develop a framework to model the downlink rate coverage probability of a user in a given small cell network (SCN) with massive MIMO-enabled wireless backhauls. The considered SCN is composed of a mixture of small cells that are configured in either in-band or out-of-band backhaul modes with a certain probability. The performance of the user in the considered hierarchical network is limited by several sources of interference such as the backhaul interference, small cell base station (SBS)-to-SBS interference and the SI. Moreover, due to the channel hardening effect in massive MIMO, the backhaul links experience long term channel effects only, whereas the access links experience both the long term and short term channel effects. Consequently, the developed framework is flexible to characterize different sources of interference while capturing the heterogeneity of the access and backhaul channels. In specific scenarios, the framework enables deriving closed-form coverage probability expressions. Under perfect backhaul coverage, the simplified expressions are utilized to optimize the proportion of in-band and out-of-band small cells in the SCN in closed-form. Finally, few remedial solutions are proposed that can potentially mitigate the backhaul interference and in turn improve the performance of in-band FD wireless backhauling. Numerical results investigate the scenarios in which in-band wireless backhauling is useful and demonstrate that maintaining a correct proportion of in-band and out-of-band FD small cells is crucial in wireless backhauled SCNs.Comment: 15 pages, 7 figures, IEEE Transactions on Communication

    Joint Backhaul-Access Analysis of Full Duplex Self-Backhauling Heterogeneous Networks

    Full text link
    With the successful demonstration of in-band full-duplex (IBFD) transceivers, a new research dimension has been added to wireless networks. This paper proposes an interesting use case of this capability for IBFD self-backhauling heterogeneous networks (HetNet). IBFD self-backhauling in a HetNet refers to IBFD-enabled small cells backhauling themselves with macro cells over the wireless channel. Owing to their IBFD capability, the small cells simultaneously communicate over the access and backhaul links, using the same frequency band. The idea is doubly advantageous, as it obviates the need for fiber backhauling small cells every hundred meters and allows the access spectrum to be reused for backhauling at no extra cost. This work considers the case of a two-tier cellular network with IBFD-enabled small cells, wirelessly backhauling themselves with conventional macro cells. For clear exposition, the case considered is that of FDD network, where within access and backhaul links, the downlink (DL) and uplink (UL) are frequency duplexed (f1f1, f2f2 respectively), while the total frequency spectrum used at access and backhaul (f1+f2f1+f2) is the same. Analytical expressions for coverage and average downlink (DL) rate in such a network are derived using tools from the field of stochastic geometry. It is shown that DL rate in such networks could be close to double that of a conventional TDD/FDD self-backhauling network, at the expense of reduced coverage due to higher interference in IBFD networks. For the proposed IBFD network, the conflicting aspects of increased interference on one side and high spectral efficiency on the other are captured into a mathematical model. The mathematical model introduces an end-to-end joint analysis of backhaul (or fronthaul) and access links, in contrast to the largely available access-centric studies.Comment: Remodeled using different large-scale path loss exponents for the Macro Base Station tier and the Pico Base Station Tier. Other formatting improvements. Submitted to IEEE Transactions on Wireless Communicatio

    Full-Duplex Cloud Radio Access Networks: An Information-Theoretic Viewpoint

    Full text link
    The conventional design of cellular systems prescribes the separation of uplink and downlink transmissions via time-division or frequency-division duplex. Recent advances in analog and digital domain self-interference interference cancellation challenge the need for this arrangement and open up the possibility to operate base stations, especially low-power ones, in a full-duplex mode. As a means to cope with the resulting downlink-to-uplink interference among base stations, this letter investigates the impact of the Cloud Radio Access Network (C-RAN) architecture. The analysis follows an information theoretic approach based on the classical Wyner model. The analytical results herein confirm the significant potential advantages of the C-RAN architecture in the presence of full-duplex base stations, as long as sufficient fronthaul capacity is available and appropriate mobile station scheduling, or successive interference cancellation at the mobile stations, is implemented.Comment: To appear in IEEE Wireless Communications Letter

    Harvest the potential of massive MIMO with multi-layer techniques

    Full text link
    Massive MIMO is envisioned as a promising technology for 5G wireless networks due to its high potential to improve both spectral and energy efficiency. Although the massive MIMO system is based on innovations in the physical layer, the upper layer techniques also play important roles in harvesting the performance gains of massive MIMO. In this article, we begin with an analysis of the benefits and challenges of massive MIMO systems. We then investigate the multi-layer techniques for incorporating massive MIMO in several important network deployment scenarios. We conclude this article with a discussion of open and potential problems for future research.Comment: IEEE Networ

    On Improving Capacity of Full-Duplex Small Cells with D2D

    Full text link
    The recent developments in full duplex (FD) communication promise doubling the capacity of cellular networks using self interference cancellation (SIC) techniques. FD small cells with device-to-device (D2D) communication links could achieve the expected capacity of the future cellular networks (5G). In this work, we consider joint scheduling and dynamic power algorithm (DPA) for a single cell FD small cell network with D2D links (D2DLs). We formulate the optimal user selection and power control as a non-linear programming (NLP) optimization problem to get the optimal user scheduling and transmission power in a given TTI. Our numerical results show that using DPA gives better overall throughput performance than full power transmission algorithm (FPA). Also, simultaneous transmissions (combination of uplink (UL), downlink (DL), and D2D occur 80% of the time thereby increasing the spectral efficiency and network capacity.Comment: Submitted to IEEE Globecom Conference 201

    Area Spectral Efficiency and Coverage for Mixed Duplexing Networks with Directional Transmissions

    Full text link
    In this paper, we consider a system of small cells assuming full duplex (FD) capable base stations (BSs) and half duplex (HD) user equipment (UEs). We investigate a mixed duplexing cellular system composed of FD and HD cells, when BSs are using directional transmissions. A stochastic geometry based model of the proposed system is used to derive the coverage and area spectral efficiency (ASE) of both BSs and UEs. The effect of FD cells on the performance of the mixed system is presented under different degree of directionality at the BSs. We show that enabling directional transmissions at the BSs yields significant ASE and coverage gain in both downlink and uplink directions. With directional transmissions, the ASE increases rapidly with the number of FD cells while the drop in the coverage rate due to FD operations reduces significantly.Comment: will be appeared in the proceedings of IEEE PIMRC 201
    • …
    corecore