140,225 research outputs found

    Hybrid tractability of soft constraint problems

    Get PDF
    The constraint satisfaction problem (CSP) is a central generic problem in computer science and artificial intelligence: it provides a common framework for many theoretical problems as well as for many real-life applications. Soft constraint problems are a generalisation of the CSP which allow the user to model optimisation problems. Considerable effort has been made in identifying properties which ensure tractability in such problems. In this work, we initiate the study of hybrid tractability of soft constraint problems; that is, properties which guarantee tractability of the given soft constraint problem, but which do not depend only on the underlying structure of the instance (such as being tree-structured) or only on the types of soft constraints in the instance (such as submodularity). We present several novel hybrid classes of soft constraint problems, which include a machine scheduling problem, constraint problems of arbitrary arities with no overlapping nogoods, and the SoftAllDiff constraint with arbitrary unary soft constraints. An important tool in our investigation will be the notion of forbidden substructures.Comment: A full version of a CP'10 paper, 26 page

    Sequential Randomized Algorithms for Convex Optimization in the Presence of Uncertainty

    Full text link
    In this paper, we propose new sequential randomized algorithms for convex optimization problems in the presence of uncertainty. A rigorous analysis of the theoretical properties of the solutions obtained by these algorithms, for full constraint satisfaction and partial constraint satisfaction, respectively, is given. The proposed methods allow to enlarge the applicability of the existing randomized methods to real-world applications involving a large number of design variables. Since the proposed approach does not provide a priori bounds on the sample complexity, extensive numerical simulations, dealing with an application to hard-disk drive servo design, are provided. These simulations testify the goodness of the proposed solution.Comment: 18 pages, Submitted for publication to IEEE Transactions on Automatic Contro

    Distance Constraint Satisfaction Problems

    Full text link
    We study the complexity of constraint satisfaction problems for templates Γ\Gamma that are first-order definable in (Z;succ)(\Bbb Z; succ), the integers with the successor relation. Assuming a widely believed conjecture from finite domain constraint satisfaction (we require the tractability conjecture by Bulatov, Jeavons and Krokhin in the special case of transitive finite templates), we provide a full classification for the case that Gamma is locally finite (i.e., the Gaifman graph of Γ\Gamma has finite degree). We show that one of the following is true: The structure Gamma is homomorphically equivalent to a structure with a d-modular maximum or minimum polymorphism and CSP(Γ)\mathrm{CSP}(\Gamma) can be solved in polynomial time, or Γ\Gamma is homomorphically equivalent to a finite transitive structure, or CSP(Γ)\mathrm{CSP}(\Gamma) is NP-complete.Comment: 35 pages, 2 figure

    Fast counting with tensor networks

    Full text link
    We introduce tensor network contraction algorithms for counting satisfying assignments of constraint satisfaction problems (#CSPs). We represent each arbitrary #CSP formula as a tensor network, whose full contraction yields the number of satisfying assignments of that formula, and use graph theoretical methods to determine favorable orders of contraction. We employ our heuristics for the solution of #P-hard counting boolean satisfiability (#SAT) problems, namely monotone #1-in-3SAT and #Cubic-Vertex-Cover, and find that they outperform state-of-the-art solvers by a significant margin.Comment: v2: added results for monotone #1-in-3SAT; published versio

    The complexity of general-valued CSPs seen from the other side

    Full text link
    The constraint satisfaction problem (CSP) is concerned with homomorphisms between two structures. For CSPs with restricted left-hand side structures, the results of Dalmau, Kolaitis, and Vardi [CP'02], Grohe [FOCS'03/JACM'07], and Atserias, Bulatov, and Dalmau [ICALP'07] establish the precise borderline of polynomial-time solvability (subject to complexity-theoretic assumptions) and of solvability by bounded-consistency algorithms (unconditionally) as bounded treewidth modulo homomorphic equivalence. The general-valued constraint satisfaction problem (VCSP) is a generalisation of the CSP concerned with homomorphisms between two valued structures. For VCSPs with restricted left-hand side valued structures, we establish the precise borderline of polynomial-time solvability (subject to complexity-theoretic assumptions) and of solvability by the kk-th level of the Sherali-Adams LP hierarchy (unconditionally). We also obtain results on related problems concerned with finding a solution and recognising the tractable cases; the latter has an application in database theory.Comment: v2: Full version of a FOCS'18 paper; improved presentation and small correction

    Distributed constraint programming with agents

    Get PDF
    Many combinatorial optimization problems lend themselves to be modeled as distributed constraint optimization problems (DisCOP). Problems such as job shop scheduling have an intuitive matching between agents and machines. In distributed constraint problems, agents control variables and are connected via constraints. We have equipped these agents with a full constraint solver. This makes it possible to use global constraint and advanced search schemes. By empowering the agents with their own solver, we overcome the low performance that often haunts distributed constraint satisfaction problems (DisCSP). By using global constraints, we achieve far greater pruning than traditional DisCSP models. Hence, we dramatically reduce communication between agents. Our experiments show that both global constraints and advanced search schemes are necessary to optimize job shop schedules using DisCSP

    The power of Sherali-Adams relaxations for general-valued CSPs

    Full text link
    We give a precise algebraic characterisation of the power of Sherali-Adams relaxations for solvability of valued constraint satisfaction problems to optimality. The condition is that of bounded width which has already been shown to capture the power of local consistency methods for decision CSPs and the power of semidefinite programming for robust approximation of CSPs. Our characterisation has several algorithmic and complexity consequences. On the algorithmic side, we show that several novel and many known valued constraint languages are tractable via the third level of the Sherali-Adams relaxation. For the known languages, this is a significantly simpler algorithm than the previously obtained ones. On the complexity side, we obtain a dichotomy theorem for valued constraint languages that can express an injective unary function. This implies a simple proof of the dichotomy theorem for conservative valued constraint languages established by Kolmogorov and Zivny [JACM'13], and also a dichotomy theorem for the exact solvability of Minimum-Solution problems. These are generalisations of Minimum-Ones problems to arbitrary finite domains. Our result improves on several previous classifications by Khanna et al. [SICOMP'00], Jonsson et al. [SICOMP'08], and Uppman [ICALP'13].Comment: Full version of an ICALP'15 paper (arXiv:1502.05301
    • …
    corecore