768 research outputs found

    The 2018 GaN power electronics roadmap

    Get PDF
    GaN is a compound semiconductor that has a tremendous potential to facilitate economic growth in a semiconductor industry that is silicon-based and currently faced with diminishing returns of performance versus cost of investment. At a material level, its high electric field strength and electron mobility have already shown tremendous potential for high frequency communications and photonic applications. Advances in growth on commercially viable large area substrates are now at the point where power conversion applications of GaN are at the cusp of commercialisation. The future for building on the work described here in ways driven by specific challenges emerging from entirely new markets and applications is very exciting. This collection of GaN technology developments is therefore not itself a road map but a valuable collection of global state-of-the-art GaN research that will inform the next phase of the technology as market driven requirements evolve. First generation production devices are igniting large new markets and applications that can only be achieved using the advantages of higher speed, low specific resistivity and low saturation switching transistors. Major investments are being made by industrial companies in a wide variety of markets exploring the use of the technology in new circuit topologies, packaging solutions and system architectures that are required to achieve and optimise the system advantages offered by GaN transistors. It is this momentum that will drive priorities for the next stages of device research gathered here

    Engineering Subsystems Analysis of Adaptive Small Satellites

    Get PDF
    The current point-based satellite electronic subsystem engineering design process is insufficient to address the dynamic operations and post-mission reuse of small satellites. Also, space systems and missions require an adaptive architecture(s) that can withstand the radiation-prone flight environment and respond to in-situ environmental changes using onboard resources while maintaining optimal performance. This enormous conceptual design variables space/task of highly adaptive small satellite (HASS) system can be too large to explore, study, analyse and qualify. This research involved a parametric electronic subsystem engineering design process and methodology development for the production of sustainable capability-based small satellites. Consequently, an adaptive multifunctional architecture with five levels of in-orbit spacecraft customisations that eliminate subsystem boundaries at the system level is presented. Additive manufacturing methods are favoured to fabricate the proposed adaptive multifunctional monolithic structures. The initial system engineering analyses reveal that the HASS system has mass-, cost- and power-savings over the conventional small satellite implementation. An adaptive small satellite link performance improvement satisfying a less than 2 dB link margin loss for a 0.1 dB in-band noise figure ripple has been established. Moreover, a power budget model for HASSs that ensures a reliable solar array design and eliminates undue equipment oversizing has been developed. An adaptive broadband beamformer that can improve the satellite link margin has been designed. Also, an estimating relationship has been developed and practically validated for the operational times analysis of small satellite subsystems. The reported novel findings promise to enable capability-based, adaptive, cost-effective, reliable, multifunctional, broadband and optimal-performing space systems with recourse to post-mission re-applications

    Energy efficient core designs for upcoming process technologies

    Get PDF
    Energy efficiency has been a first order constraint in the design of micro processors for the last decade. As Moore's law sunsets, new technologies are being actively explored to extend the march in increasing the computational power and efficiency. It is essential for computer architects to understand the opportunities and challenges in utilizing the upcoming process technology trends in order to design the most efficient processors. In this work, we consider three process technology trends and propose core designs that are best suited for each of the technologies. The process technologies are expected to be viable over a span of timelines. We first consider the most popular method currently available to improve the energy efficiency, i.e. by lowering the operating voltage. We make key observations regarding the limiting factors in scaling down the operating voltage for general purpose high performance processors. Later, we propose our novel core design, ScalCore, one that can work in high performance mode at nominal Vdd, and in a very energy-efficient mode at low Vdd. The resulting core design can operate at much lower voltages providing higher parallel performance while consuming lower energy. While lowering Vdd improves the energy efficiency, CMOS devices are fundamentally limited in their low voltage operation. Therefore, we next consider an upcoming device technology -- Tunneling Field-Effect Transistors (TFETs), that is expected to supplement CMOS device technology in the near future. TFETs can attain much higher energy efficiency than CMOS at low voltages. However, their performance saturates at high voltages and, therefore, cannot entirely replace CMOS when high performance is needed. Ideally, we desire a core that is as energy-efficient as TFET and provides as much performance as CMOS. To reach this goal, we characterize the TFET device behavior for core design and judiciously integrate TFET units, CMOS units in a single core. The resulting core, called HetCore, can provide very high energy efficiency while limiting the slowdown when compared to a CMOS core. Finally, we analyze Monolithic 3D (M3D) integration technology that is widely considered to be the only way to integrate more transistors on a chip. We present the first analysis of the architectural implications of using M3D for core design and show how to partition the core across different layers. We also address one of the key challenges in realizing the technology, namely, the top layer performance degradation. We propose a critical path based partitioning for logic stages and asymmetric bit/port partitioning for storage stages. The result is a core that performs nearly as well as a core without any top layer slowdown. When compared to a 2D baseline design, an M3D core not only provides much higher performance, it also reduces the energy consumption at the same time. In summary, this thesis addresses one of the fundamental challenges in computer architecture -- overcoming the fact that CMOS is not scaling anymore. As we increase the computing power on a single chip, our ability to power the entire chip keeps decreasing. This thesis proposes three solutions aimed at solving this problem over different timelines. Across all our solutions, we improve energy efficiency without compromising the performance of the core. As a result, we are able to operate twice as many cores with in the same power budget as regular cores, significantly alleviating the problem of dark silicon
    • …
    corecore