1,181 research outputs found

    Progressive Analytics: A Computation Paradigm for Exploratory Data Analysis

    Get PDF
    Exploring data requires a fast feedback loop from the analyst to the system, with a latency below about 10 seconds because of human cognitive limitations. When data becomes large or analysis becomes complex, sequential computations can no longer be completed in a few seconds and data exploration is severely hampered. This article describes a novel computation paradigm called Progressive Computation for Data Analysis or more concisely Progressive Analytics, that brings at the programming language level a low-latency guarantee by performing computations in a progressive fashion. Moving this progressive computation at the language level relieves the programmer of exploratory data analysis systems from implementing the whole analytics pipeline in a progressive way from scratch, streamlining the implementation of scalable exploratory data analysis systems. This article describes the new paradigm through a prototype implementation called ProgressiVis, and explains the requirements it implies through examples.Comment: 10 page

    Resilient availability and bandwidth-aware multipath provisioning for media transfer over the internet (Best Paper Award)

    Get PDF
    Traditional routing in the Internet is best-effort. Path differentiation including multipath routing is a promising technique to be used for meeting QoS requirements of media intensive applications. Since different paths have different characteristics in terms of latency, availability and bandwidth, they offer flexibility in QoS and congestion control. Additionally protection techniques can be used to enhance the reliability of the network. This paper studies the problem of how to optimally find paths ensuring maximal bandwidth and resiliency of media transfer over the network. In particular, we propose two algorithms to reserve network paths with minimal new resources while increasing the availability of the paths and enabling congestion control. The first algorithm is based on Integer Linear Programming which minimizes the cost of the paths and the used resources. The second one is a heuristic-based algorithm which solves the scalability limitations of the ILP approach. The algorithms ensure resiliency against any single link failure in the network. The experimental results indicate that using the proposed schemes the connections availability improve significantly and a more balanced load is achieved in the network compared to the shortest path-based approaches

    A review on orchestration distributed systems for IoT smart services in fog computing

    Get PDF
    This paper provides a review of orchestration distributed systems for IoT smart services in fog computing. The cloud infrastructure alone cannot handle the flow of information with the abundance of data, devices and interactions. Thus, fog computing becomes a new paradigm to overcome the problem. One of the first challenges was to build the orchestration systems to activate the clouds and to execute tasks throughout the whole system that has to be considered to the situation in the large scale of geographical distance, heterogeneity and low latency to support the limitation of cloud computing. Some problems exist for orchestration distributed in fog computing are to fulfil with high reliability and low-delay requirements in the IoT applications system and to form a larger computer network like a fog network, at different geographic sites. This paper reviewed approximately 68 articles on orchestration distributed system for fog computing. The result shows the orchestration distribute system and some of the evaluation criteria for fog computing that have been compared in terms of Borg, Kubernetes, Swarm, Mesos, Aurora, heterogeneity, QoS management, scalability, mobility, federation, and interoperability. The significance of this study is to support the researcher in developing orchestration distributed systems for IoT smart services in fog computing focus on IR4.0 national agend

    MOSDEN: An Internet of Things Middleware for Resource Constrained Mobile Devices

    Get PDF
    The Internet of Things (IoT) is part of Future Internet and will comprise many billions of Internet Connected Objects (ICO) or `things' where things can sense, communicate, compute and potentially actuate as well as have intelligence, multi-modal interfaces, physical/ virtual identities and attributes. Collecting data from these objects is an important task as it allows software systems to understand the environment better. Many different hardware devices may involve in the process of collecting and uploading sensor data to the cloud where complex processing can occur. Further, we cannot expect all these objects to be connected to the computers due to technical and economical reasons. Therefore, we should be able to utilize resource constrained devices to collect data from these ICOs. On the other hand, it is critical to process the collected sensor data before sending them to the cloud to make sure the sustainability of the infrastructure due to energy constraints. This requires to move the sensor data processing tasks towards the resource constrained computational devices (e.g. mobile phones). In this paper, we propose Mobile Sensor Data Processing Engine (MOSDEN), an plug-in-based IoT middleware for mobile devices, that allows to collect and process sensor data without programming efforts. Our architecture also supports sensing as a service model. We present the results of the evaluations that demonstrate its suitability towards real world deployments. Our proposed middleware is built on Android platform

    Towards QoE-Driven Optimization of Multi-Dimensional Content Streaming

    Get PDF
    Whereas adaptive video streaming for 2D video is well established and frequently used in streaming services, adaptation for emerging higher-dimensional content, such as point clouds, is still a research issue. Moreover, how to optimize resource usage in streaming services that support multiple content types of different dimensions and levels of interactivity has so far not been sufficiently studied. Learning-based approaches aim to optimize the streaming experience according to user needs. They predict quality metrics and try to find system parameters maximizing them given the current network conditions. With this paper, we show how to approach content and network adaption driven by Quality of Experience (QoE) for multi-dimensional content. We describe components required to create a system adapting multiple streams of different content types simultaneously, identify research gaps and propose potential next steps
    corecore