726 research outputs found

    Planning of Truck Platoons: a Literature Review and Directions for Future Research

    Get PDF
    A truck platoon is a set of virtually linked trucks that drive closely behind one another using automated driving technology. Benefits of truck platooning include cost savings, reduced emissions, and more efficient utilization of road capacity. To fully reap these benefits in the initial phases requires careful planning of platoons based on trucks’ itineraries and time schedules. This paper provides a framework to classify various new transportation planning problems that arise in truck platooning, surveys relevant operations research models for these problems in the literature and identifies directions for future research

    Optimizing Coordinated Vehicle Platooning: An Analytical Approach Based on Stochastic Dynamic Programming

    Full text link
    Platooning connected and autonomous vehicles (CAVs) can improve traffic and fuel efficiency. However, scalable platooning operations require junction-level coordination, which has not been well studied. In this paper, we study the coordination of vehicle platooning at highway junctions. We consider a setting where CAVs randomly arrive at a highway junction according to a general renewal process. When a CAV approaches the junction, a system operator determines whether the CAV will merge into the platoon ahead according to the positions and speeds of the CAV and the platoon. We formulate a Markov decision process to minimize the discounted cumulative travel cost, i.e. fuel consumption plus travel delay, over an infinite time horizon. We show that the optimal policy is threshold-based: the CAV will merge with the platoon if and only if the difference between the CAV's and the platoon's predicted times of arrival at the junction is less than a constant threshold. We also propose two ready-to-implement algorithms to derive the optimal policy. Comparison with the classical value iteration algorithm implies that our approach explicitly incorporating the characteristics of the optimal policy is significantly more efficient in terms of computation. Importantly, we show that the optimal policy under Poisson arrivals can be obtained by solving a system of integral equations. We also validate our results in simulation with Real-time Strategy (RTS) using real traffic data. The simulation results indicate that the proposed method yields better performance compared with the conventional method

    Designing and Scheduling Cost-Efficient Tours by Using the Concept of Truck Platooning

    Get PDF
    Truck Platooning is a promising new technology to reduce the fuel consumption by around 15% via the exploitation of a preceding and digitally connected truck’s slipstream. However, the cost-efficient coordination of such platoons under consideration of mandatory EU driving time restrictions turns out to be a highly complex task. For this purpose, we provide a comprehensive literature review and formulate the exact EU-Truck Platooning Problem (EU-TPP) as an Integer Linear Program (ILP) which also features a hypothetical task-relieving effect for following drivers in a convoy. In order to increase the computational efficiency, we introduce an auxiliary constraint and two hierarchical planning-based matheuristic approaches: the Shortest Path Heuristic (SPH) and the Platoon Routing Heuristic (PRH). Besides a qualitative sensitivity analysis, we perform an extensive numerical study to investigate the impact of different critical influence factors on platooning, being of major political and economic interest. Our experiments with the EU-TPP suggest remarkable fuel cost savings of up to 10.83% without a 50% task relief, while its inclusion leads to additional personnel cost savings of up to even 31.86% at best with maximally 12 trucks to be coordinated in a recreated part of the European highway network. Moreover, we prove our matheuristics’ highly favorable character in terms of solution quality and processing time. Keywords: autonomous transport; Truck Platooning; driving time and rest periods; cost-efficient routing & scheduling; computational efficiency

    Large-Scale Multi-Fleet Platoon Coordination: A Dynamic Programming Approach

    Full text link
    Truck platooning is a promising technology that enables trucks to travel in formations with small inter-vehicle distances for improved aerodynamics and fuel economy. The real-world transportation system includes a vast number of trucks owned by different fleet owners, for example, carriers. To fully exploit the benefits of platooning, efficient dispatching strategies that facilitate the platoon formations across fleets are required. This paper presents a distributed framework for addressing multi-fleet platoon coordination in large transportation networks, where each truck has a fixed route and aims to maximize its own fleet's platooning profit by scheduling its waiting times at hubs. The waiting time scheduling problem of individual trucks is formulated as a distributed optimal control problem with continuous decision space and a reward function that takes non-zero values only at discrete points. By suitably discretizing the decision and state spaces, we show that the problem can be solved exactly by dynamic programming, without loss of optimality. Finally, a realistic simulation study is conducted over the Swedish road network with 5,0005,000 trucks to evaluate the profit and efficiency of the approach. The simulation study shows that, compared to single-fleet platooning, multi-fleet platooning provided by our method achieves around 1515 times higher monetary profit and increases the CO2_2 emission reductions from 0.4%0.4\% to 5.5%5.5\%. In addition, it shows that the developed approach can be carried out in real-time and thus is suitable for platoon coordination in large transportation systems.Comment: IEEE Transactions on Intelligent Transportation Systems, accepte

    Truck Platooning:Planning and Behaviour

    Get PDF

    Truck Platooning:Planning and Behaviour

    Get PDF
    • …
    corecore