3,202 research outputs found

    Physics-based prognostic modelling of filter clogging phenomena

    Get PDF
    In industry, contaminant filtration is a common process to achieve a desired level of purification, since contaminants in liquids such as fuel may lead to performance drop and rapid wear propagation. Generally, clogging of filter phenomena is the primary failure mode leading to the replacement or cleansing of filter. Cascading failures and weak performance of the system are the unfortunate outcomes due to a clogged filter. Even though filtration and clogging phenomena and their effects of several observable parameters have been studied for quite some time in the literature, progression of clogging and its use for prognostics purposes have not been addressed yet. In this work, a physics based clogging progression model is presented. The proposed model that bases on a well-known pressure drop equation is able to model three phases of the clogging phenomena, last of which has not been modelled in the literature yet. In addition, the presented model is integrated with particle filters to predict the future clogging levels and to estimate the remaining useful life of fuel filters. The presented model has been implemented on the data collected from an experimental rig in the lab environment. In the rig, pressure drop across the filter, flow rate, and filter mesh images are recorded throughout the accelerated degradation experiments. The presented physics based model has been applied to the data obtained from the rig. The remaining useful lives of the filters used in the experimental rig have been reported in the paper. The results show that the presented methodology provides significantly accurate and precise prognostic results

    Kalman-variant estimators for state of charge in lithium-sulfur batteries

    Get PDF
    Lithium-sulfur batteries are now commercially available, offering high specific energy density, low production costs and high safety. However, there is no commercially-available battery management system for them, and there are no published methods for determining state of charge in situ. This paper describes a study to address this gap. The properties and behaviours of lithium-sulfur are briefly introduced, and the applicability of ‘standard’ lithium-ion state-of-charge estimation methods is explored. Open-circuit voltage methods and ‘Coulomb counting’ are found to have a poor fit for lithium-sulfur, and model-based methods, particularly recursive Bayesian filters, are identified as showing strong promise. Three recursive Bayesian filters are implemented: an extended Kalman filter (EKF), an unscented Kalman filter (UKF) and a particle filter (PF). These estimators are tested through practical experimentation, considering both a pulse-discharge test and a test based on the New European Driving Cycle (NEDC). Experimentation is carried out at a constant temperature, mirroring the environment expected in the authors' target automotive application. It is shown that the estimators, which are based on a relatively simple equivalent-circuit–network model, can deliver useful results. If the three estimators implemented, the unscented Kalman filter gives the most robust and accurate performance, with an acceptable computational effort

    Novel Approaches for State of Charge Modeling in Battery Management Systems

    Get PDF
    One of the key steps of any battery management system design is the representation of the open circuit voltage (OCV) as a function of the state of charge (SOC). The OCV-SOC relationship is very non-linear that is often represented using a polynomial that has log and inverse terms that are not defined around SOC equal to zero or one. The traditional response to this problem was only at the software level. In this thesis, I present a formal scaling approach to the OCV-SOC characterization in Li-ion batteries. I show that, through formal modeling and optimization, the traditional approach to OCV-SOC modeling can be significantly improved by selecting the proper value of ϵ\epsilon. When the proposed technique is used a decrease in the maximum SOC error of 9\% is reported. The proposed approach is tested on data collected from multiple cells over various temperatures for OCV-SOC characterization and the results are presented. State-space model (SSM) and the Kalman filter have several applications in the emerging areas of automation and data science including in battery SOC estimation. In many such applications, the application of Kalman filtering requires model identification with the help of the observed data. I present the formulas with derivations for linear state-space model parameter estimation using the expectation maximization (EM) algorithm. Particularly, I derive the formulas for different special SSM cases of practical interest, such as the continuous white noise acceleration (CWNA) model. Through simulation, I show the benefits of these derivations for the special models in comparison with the generalized approach

    A review on prognostics and health monitoring of proton exchange membrane fuel cell

    Get PDF
    Fuel cell technology can be traced back to 1839 when British scientist Sir William Grove discovered that it was possible to generate electricity by the reaction between hydrogen and oxygen gases. However, fuel cell still cannot compete with internal combustion engines although they have many advantages including zero carbon emissions. Fossil fuels are cheaper and present very high volumetric energy densities compared with the hydrogen gas. Furthermore, hydrogen storage as a liquid is still a huge challenge. Another important disadvantage is the lifespan of the fuel cell because of their durability, reliability and maintainability. Prognostics is an emerging technology in sustainability of engineering systems through failure prevention, reliability assessment and remaining useful lifetime estimation. Prognostics and health monitoring can play a critical role in enhancing the durability, reliability and maintainability of the fuel cell system. This paper presents a review on the current state-of-the-art in prognostics and health monitoring of Proton Exchange Membrane Fuel Cell (PEMFC), aiming at identifying research and development opportunities in these fields. This paper also highlights the importance of incorporating prognostics and failure modes, mechanisms and effects analysis (FMMEA) in PEMFC to give them sustainable competitive advantage when compared with other non-clean energy solutions

    Methods of Technical Prognostics Applicable to Embedded Systems

    Get PDF
    Hlavní cílem dizertace je poskytnutí uceleného pohledu na problematiku technické prognostiky, která nachází uplatnění v tzv. prediktivní údržbě založené na trvalém monitorování zařízení a odhadu úrovně degradace systému či jeho zbývající životnosti a to zejména v oblasti komplexních zařízení a strojů. V současnosti je technická diagnostika poměrně dobře zmapovaná a reálně nasazená na rozdíl od technické prognostiky, která je stále rozvíjejícím se oborem, který ovšem postrádá větší množství reálných aplikaci a navíc ne všechny metody jsou dostatečně přesné a aplikovatelné pro embedded systémy. Dizertační práce přináší přehled základních metod použitelných pro účely predikce zbývající užitné životnosti, jsou zde popsány metriky pomocí, kterých je možné jednotlivé přístupy porovnávat ať už z pohledu přesnosti, ale také i z pohledu výpočetní náročnosti. Jedno z dizertačních jader tvoří doporučení a postup pro výběr vhodné prognostické metody s ohledem na prognostická kritéria. Dalším dizertačním jádrem je představení tzv. částicového filtrovaní (particle filtering) vhodné pro model-based prognostiku s ověřením jejich implementace a porovnáním. Hlavní dizertační jádro reprezentuje případovou studii pro velmi aktuální téma prognostiky Li-Ion baterii s ohledem na trvalé monitorování. Případová studie demonstruje proces prognostiky založené na modelu a srovnává možné přístupy jednak pro odhad doby před vybitím baterie, ale také sleduje možné vlivy na degradaci baterie. Součástí práce je základní ověření modelu Li-Ion baterie a návrh prognostického procesu.The main aim of the thesis is to provide a comprehensive overview of technical prognosis, which is applied in the condition based maintenance, based on continuous device monitoring and remaining useful life estimation, especially in the field of complex equipment and machinery. Nowadays technical prognosis is still evolving discipline with limited number of real applications and is not so well developed as technical diagnostics, which is fairly well mapped and deployed in real systems. Thesis provides an overview of basic methods applicable for prediction of remaining useful life, metrics, which can help to compare the different approaches both in terms of accuracy and in terms of computational/deployment cost. One of the research cores consists of recommendations and guide for selecting the appropriate forecasting method with regard to the prognostic criteria. Second thesis research core provides description and applicability of particle filtering framework suitable for model-based forecasting. Verification of their implementation and comparison is provided. The main research topic of the thesis provides a case study for a very actual Li-Ion battery health monitoring and prognostics with respect to continuous monitoring. The case study demonstrates the prognostic process based on the model and compares the possible approaches for estimating both the runtime and capacity fade. Proposed methodology is verified on real measured data.

    Advances in Batteries, Battery Modeling, Battery Management System, Battery Thermal Management, SOC, SOH, and Charge/Discharge Characteristics in EV Applications

    Get PDF
    The second-generation hybrid and Electric Vehicles are currently leading the paradigm shift in the automobile industry, replacing conventional diesel and gasoline-powered vehicles. The Battery Management System is crucial in these electric vehicles and also essential for renewable energy storage systems. This review paper focuses on batteries and addresses concerns, difficulties, and solutions associated with them. It explores key technologies of Battery Management System, including battery modeling, state estimation, and battery charging. A thorough analysis of numerous battery models, including electric, thermal, and electro-thermal models, is provided in the article. Additionally, it surveys battery state estimations for a charge and health. Furthermore, the different battery charging approaches and optimization methods are discussed. The Battery Management System performs a wide range of tasks, including as monitoring voltage and current, estimating charge and discharge, equalizing and protecting the battery, managing temperature conditions, and managing battery data. It also looks at various cell balancing circuit types, current and voltage stressors, control reliability, power loss, efficiency, as well as their advantages and disadvantages. The paper also discusses research gaps in battery management systems.publishedVersio

    Modelling and estimation of vanadium redox flow batteries: a review

    Get PDF
    Redox flow batteries are one of the most promising technologies for large-scale energy storage, especially in applications based on renewable energies. In this context, considerable efforts have been made in the last few years to overcome the limitations and optimise the performance of this technology, aiming to make it commercially competitive. From the monitoring point of view, one of the biggest challenges is the estimation of the system internal states, such as the state of charge and the state of health, given the complexity of obtaining such information directly from experimental measures. Therefore, many proposals have been recently developed to get rid of such inconvenient measurements and, instead, utilise an algorithm that makes use of a mathematical model in order to rely only on easily measurable variables such as the system’s voltage and current. This review provides a comprehensive study of the different types of dynamic models available in the literature, together with an analysis of the existing model-based estimation strategies. Finally, a discussion about the remaining challenges and possible future research lines on this field is presented.The research that gave rise to these results received support from “la Caixa” Foundation (ID 100010434. Fellowship code LCF/BQ/DI21/11860023) , the CSIC program for the Spanish Recovery, Transformation and Resilience Plan funded by the Recovery and Resilience Facility of the European Union, established by the Regulation (EU) 2020/2094, CSIC Interdisciplinary Thematic Platform (PTI+) Transición Energética Sostenible+ (PTI-TRANSENER+ project TRE2103000), the Spanish Ministry of Science and Innovation (project PID2021-126001OB-C31 funded by MCIN/AEI/10.13039/501100011033 / ERDF,EU) and the Spanish Ministry of Economy and Competitiveness under Project DOVELAR (ref. RTI2018-096001-B-C32).Peer ReviewedPostprint (published version
    corecore