20 research outputs found

    Learning-based wildfire tracking with unmanned aerial vehicles

    Get PDF
    This project attempts to design a path planning algorithm for a group of unmanned aerial vehicles (UAVs) to track multiple spreading wildfire zones on a wildland. Due to the physical limitations of UAVs, the wildland is partially observable. Thus, the fire spreading is difficult to model. An online training regression neural network using real-time UAV observation data is implemented for fire front positions prediction. The wildfire tracking with UAVs path planning algorithm is proposed by Q-learning. Various practical factors are considered by designing an appropriate cost function which can describe the tracking problem, such as importance of the moving targets, field of view of UAVs, spreading speed of fire zones, collision avoidance between UAVs, obstacle avoidance, and maximum information collection. To improve the computation efficiency, a vertices-based fire line feature extraction is used to reduce the fire line targets. Simulation results under various wind conditions validate the fire prediction accuracy and UAV tracking performance.Includes bibliographical references

    Belief State Planning for Autonomous Driving: Planning with Interaction, Uncertain Prediction and Uncertain Perception

    Get PDF
    This work presents a behavior planning algorithm for automated driving in urban environments with an uncertain and dynamic nature. The algorithm allows to consider the prediction uncertainty (e.g. different intentions), perception uncertainty (e.g. occlusions) as well as the uncertain interactive behavior of the other agents explicitly. Simulating the most likely future scenarios allows to find an optimal policy online that enables non-conservative planning under uncertainty

    Active Object Classification from 3D Range Data with Mobile Robots

    Get PDF
    This thesis addresses the problem of how to improve the acquisition of 3D range data with a mobile robot for the task of object classification. Establishing the identities of objects in unknown environments is fundamental for robotic systems and helps enable many abilities such as grasping, manipulation, or semantic mapping. Objects are recognised by data obtained from sensor observations, however, data is highly dependent on viewpoint; the variation in position and orientation of the sensor relative to an object can result in large variation in the perception quality. Additionally, cluttered environments present a further challenge because key data may be missing. These issues are not always solved by traditional passive systems where data are collected from a fixed navigation process then fed into a perception pipeline. This thesis considers an active approach to data collection by deciding where is most appropriate to make observations for the perception task. The core contributions of this thesis are a non-myopic planning strategy to collect data efficiently under resource constraints, and supporting viewpoint prediction and evaluation methods for object classification. Our approach to planning uses Monte Carlo methods coupled with a classifier based on non-parametric Bayesian regression. We present a novel anytime and non-myopic planning algorithm, Monte Carlo active perception, that extends Monte Carlo tree search to partially observable environments and the active perception problem. This is combined with a particle-based estimation process and a learned observation likelihood model that uses Gaussian process regression. To support planning, we present 3D point cloud prediction algorithms and utility functions that measure the quality of viewpoints by their discriminatory ability and effectiveness under occlusion. The utility of viewpoints is quantified by information-theoretic metrics, such as mutual information, and an alternative utility function that exploits learned data is developed for special cases. The algorithms in this thesis are demonstrated in a variety of scenarios. We extensively test our online planning and classification methods in simulation as well as with indoor and outdoor datasets. Furthermore, we perform hardware experiments with different mobile platforms equipped with different types of sensors. Most significantly, our hardware experiments with an outdoor robot are to our knowledge the first demonstrations of online active perception in a real outdoor environment. Active perception has broad significance in many applications. This thesis emphasises the advantages of an active approach to object classification and presents its assimilation with a wide range of robotic systems, sensors, and perception algorithms. By demonstration of performance enhancements and diversity, our hope is that the concept of considering perception and planning in an integrated manner will be of benefit in improving current systems that rely on passive data collection

    Belief State Planning for Autonomous Driving: Planning with Interaction, Uncertain Prediction and Uncertain Perception

    Get PDF
    This thesis presents a behavior planning algorithm for automated driving in urban environments with an uncertain and dynamic nature. The uncertainty in the environment arises by the fact that the intentions as well as the future trajectories of the surrounding drivers cannot be measured directly but can only be estimated in a probabilistic fashion. Even the perception of objects is uncertain due to sensor noise or possible occlusions. When driving in such environments, the autonomous car must predict the behavior of the other drivers and plan safe, comfortable and legal trajectories. Planning such trajectories requires robust decision making when several high-level options are available for the autonomous car. Current planning algorithms for automated driving split the problem into different subproblems, ranging from discrete, high-level decision making to prediction and continuous trajectory planning. This separation of one problem into several subproblems, combined with rule-based decision making, leads to sub-optimal behavior. This thesis presents a global, closed-loop formulation for the motion planning problem which intertwines action selection and corresponding prediction of the other agents in one optimization problem. The global formulation allows the planning algorithm to make the decision for certain high-level options implicitly. Furthermore, the closed-loop manner of the algorithm optimizes the solution for various, future scenarios concerning the future behavior of the other agents. Formulating prediction and planning as an intertwined problem allows for modeling interaction, i.e. the future reaction of the other drivers to the behavior of the autonomous car. The problem is modeled as a partially observable Markov decision process (POMDP) with a discrete action and a continuous state and observation space. The solution to the POMDP is a policy over belief states, which contains different reactive plans for possible future scenarios. Surrounding drivers are modeled with interactive, probabilistic agent models to account for their prediction uncertainty. The field of view of the autonomous car is simulated ahead over the whole planning horizon during the optimization of the policy. Simulating the possible, corresponding, future observations allows the algorithm to select actions that actively reduce the uncertainty of the world state. Depending on the scenario, the behavior of the autonomous car is optimized in (combined lateral and) longitudinal direction. The algorithm is formulated in a generic way and solved online, which allows for applying the algorithm on various road layouts and scenarios. While such a generic problem formulation is intractable to solve exactly, this thesis demonstrates how a sufficiently good approximation to the optimal policy can be found online. The problem is solved by combining state of the art Monte Carlo tree search algorithms with near-optimal, domain specific roll-outs. The algorithm is evaluated in scenarios such as the crossing of intersections under unknown intentions of other crossing vehicles, interactive lane changes in narrow gaps and decision making at intersections with large occluded areas. It is shown that the behavior of the closed-loop planner is less conservative than comparable open-loop planners. More precisely, it is even demonstrated that the policy enables the autonomous car to drive in a similar way as an omniscient planner with full knowledge of the scene. It is also demonstrated how the autonomous car executes actions to actively gather more information about the surrounding and to reduce the uncertainty of its belief state

    Shielding in Resource-Constrained Goal POMDPs

    Full text link
    We consider partially observable Markov decision processes (POMDPs) modeling an agent that needs a supply of a certain resource (e.g., electricity stored in batteries) to operate correctly. The resource is consumed by agent's actions and can be replenished only in certain states. The agent aims to minimize the expected cost of reaching some goal while preventing resource exhaustion, a problem we call \emph{resource-constrained goal optimization} (RSGO). We take a two-step approach to the RSGO problem. First, using formal methods techniques, we design an algorithm computing a \emph{shield} for a given scenario: a procedure that observes the agent and prevents it from using actions that might eventually lead to resource exhaustion. Second, we augment the POMCP heuristic search algorithm for POMDP planning with our shields to obtain an algorithm solving the RSGO problem. We implement our algorithm and present experiments showing its applicability to benchmarks from the literature

    Proceedings of the 2015 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    This book is a collection of proceedings of the talks given at the 2015 annual joint workshop of Fraunhofer IOSB and the Vision and Fusion Laboratory (IES) by the doctoral students of both institutions. The topics of individual contributions range from computer vision, optical metrology, and world modelling to data fusion and human-machine interaction

    High-Performance Testbed for Vision-Aided Autonomous Navigation for Quadrotor UAVs in Cluttered Environments

    Get PDF
    This thesis presents the development of an aerial robotic testbed based on Robot Operating System (ROS). The purpose of this high-performance testbed is to develop a system capable of performing robust navigation tasks using vision tools such as a stereo camera. While ensuring the computation of robot odometery, the system is also capable of sensing the environment using the same stereo camera. Hence, all the navigation tasks are performed using a stereo camera and an inertial measurement unit (IMU) as the main sensor suite. ROS is used as a framework for software integration due to its capabilities to provide efficient communication and sensor interfaces. Moreover, it also allows us to use C++ which is efficient in performance especially on embedded platforms. Combining together ROS and C++ provides the necessary computation efficiency and tools to handle fast, real-time image processing and planning which are the vital parts of navigation and obstacle avoidance on such scale. The main application of this work revolves around proposing a real-time and efficient way to demonstrate vision-based navigation in UAVs. The proposed approach is developed for a quadrotor UAV which is capable of performing defensive maneuvers in case any obstacles are in its way, while constantly moving towards a user-defined final destination. Stereo depth computation adds a third axis to a two dimensional image coordinate frame. This can be referred to as the depth image space or depth image coordinate frame. The idea of planning in this frame of reference is utilized along with certain precomputed action primitives. The formulation of these action primitives leads to a hybrid control law for feasible trajectory generation. Further, a proof of stability of this system is also presented. The proposed approach keeps in view the fact that while performing fast maneuvers and obstacle avoidance simultaneously, many of the standard optimization approaches might not work in real-time on-board due to time and resource limitations. This leads to a need for the development of real-time techniques for vision-based autonomous navigation

    Simultaneous Prediction and Planning in Crowds using Learnt Models of Social Response

    Get PDF
    The ability of autonomous mobile robots to work alongside humans and animals in real world environments has the potential to revolutionise the way in which many routine and labour intensive tasks are completed. Whilst we are seeing increasing applications in controlled environments, such as traffic and warehousing, robots are still far from ubiquitous in everyday life. In unstructured environments, such as agriculture or pedestrian crowds, where interactions between agents are not guided by infrastructure, there exist additional challenges that need to be overcome before we are likely to see the widespread adoption of mobile robots. Safe navigation in shared environments requires the accurate perception of nearby individuals using a robot's on board sensors. Additionally, the future motion of detected individuals needs to be predicted both for collision avoidance and efficient navigation. These predictions should reflect the inherent uncertainty of the individual's future, including the ways in which an individual might respond to its neighbours, including the robot itself. As such, there exists a dependency between any prediction of an individual's motion and the planned path of the robot, which needs to be accounted for both during the prediction and planning stages of navigation. This thesis focuses on how prediction and planning can be approached in a single framework to address this dependency, using learnt models of social response within a sampling based path planner for simultaneous prediction and planning (SPP). Additional challenges faced in navigating shared and unstructured environments are also addressed, including predicting the uncertain branching and multi-modal nature of agent motion during social interactions, and overcoming the on-board limitations of mobile robots --- such as resource and sensing constraints --- in order to achieve extended autonomy

    Active Perception for Autonomous Systems : In a Deep Space Navigation Scenario

    Get PDF
    Autonomous systems typically pursue certain goals for an extended amount of time in a self-sustainable fashion. To this end, they are equipped with a set of sensors and actuators to perceive certain aspects of the world and thereupon manipulate it in accordance with some given goals. This kind of interaction can be thought of as a closed loop in which a perceive-reason-act process takes place. The bi-directional interface between an autonomous system and the outer world is then given by a sequence of imperfect observations of the world and corresponding controls which are as well imperfectly actuated. To be able to reason in such a setting, it is customary for an autonomous system to maintain a probabilistic state estimate. The quality of the estimate -- or its uncertainty -- is, in turn, dependent on the information acquired within the perceive-reason-act loop described above. Hence, this thesis strives to investigate the question of how to actively steer such a process in order to maximize the quality of the state estimate. The question will be approached by introducing different probabilistic state estimation schemes jointly working on a manifold-based encapsuled state representation. On top of the resultant state estimate different active perception approaches are introduced, which determine optimal actions with respect to uncertainty minimization. The informational value of the particular actions is given by the expected impact of measurements on the uncertainty. The latter can be obtained by different direct and indirect measures, which will be introduced and discussed. The active perception schemes for autonomous systems will be investigated with a focus on two specific deep space navigation scenarios deduced from a potential mining mission to the main asteroid belt. In the first scenario, active perception strategies are proposed, which foster the correctional value of the sensor information acquired within a heliocentric navigation approach. Here, the expected impact of measurements is directly estimated, thus omitting counterfactual updates of the state based on hypothetical actions. Numerical evaluations of this scenario show that active perception is beneficial, i.e., the quality of the state estimate is increased. In addition, it is shown that the more uncertain a state estimate is, the more the value of active perception increases. In the second scenario, active autonomous deep space navigation in the vicinity of asteroids is investigated. A trajectory and a map are jointly estimated by a Graph SLAM algorithm based on measurements of a 3D Flash-LiDAR. The active perception strategy seeks to trade-off the exploration of the asteroid against the localization performance. To this end, trajectories are generated as well as evaluated in a novel twofold approach specifically tailored to the scenario. Finally, the position uncertainty can be extracted from the graph structure and subsequently be used to dynamically control the trade-off between localization and exploration. In a numerical evaluation, it is shown that the localization performance of the Graph SLAM approach to navigation in the vicinity of asteroids is generally high. Furthermore, the active perception strategy is able to trade-off between localization performance and the degree of exploration of the asteroid. Finally, when the latter process is dynamically controlled, based on the current localization uncertainty, a joint improvement of localization as well as exploration performance can be achieved. In addition, this thesis comprises an excursion into active sensorimotor object recognition. A sensorimotor feature is derived from biological principles of the human perceptual system. This feature is then employed in different probabilistic classification schemes. Furthermore, it enables the implementation of an active perception strategy, which can be thought of as a feature selection process in a classification scheme. It is shown that those strategies might be driven by top-down factors, i.e., based on previously learned information, or by bottom-up factors, i.e., based on saliency detected in the currently considered data. Evaluations are conducted based on real data acquired by a camera mounted on a robotic arm as well as on datasets. It is shown that the integrated representation of perception and action fosters classification performance and that the application of an active perception strategy accelerates the classification process
    corecore