8 research outputs found

    Grasp-sensitive surfaces

    Get PDF
    Grasping objects with our hands allows us to skillfully move and manipulate them. Hand-held tools further extend our capabilities by adapting precision, power, and shape of our hands to the task at hand. Some of these tools, such as mobile phones or computer mice, already incorporate information processing capabilities. Many other tools may be augmented with small, energy-efficient digital sensors and processors. This allows for graspable objects to learn about the user grasping them - and supporting the user's goals. For example, the way we grasp a mobile phone might indicate whether we want to take a photo or call a friend with it - and thus serve as a shortcut to that action. A power drill might sense whether the user is grasping it firmly enough and refuse to turn on if this is not the case. And a computer mouse could distinguish between intentional and unintentional movement and ignore the latter. This dissertation gives an overview of grasp sensing for human-computer interaction, focusing on technologies for building grasp-sensitive surfaces and challenges in designing grasp-sensitive user interfaces. It comprises three major contributions: a comprehensive review of existing research on human grasping and grasp sensing, a detailed description of three novel prototyping tools for grasp-sensitive surfaces, and a framework for analyzing and designing grasp interaction: For nearly a century, scientists have analyzed human grasping. My literature review gives an overview of definitions, classifications, and models of human grasping. A small number of studies have investigated grasping in everyday situations. They found a much greater diversity of grasps than described by existing taxonomies. This diversity makes it difficult to directly associate certain grasps with users' goals. In order to structure related work and own research, I formalize a generic workflow for grasp sensing. It comprises *capturing* of sensor values, *identifying* the associated grasp, and *interpreting* the meaning of the grasp. A comprehensive overview of related work shows that implementation of grasp-sensitive surfaces is still hard, researchers often are not aware of related work from other disciplines, and intuitive grasp interaction has not yet received much attention. In order to address the first issue, I developed three novel sensor technologies designed for grasp-sensitive surfaces. These mitigate one or more limitations of traditional sensing techniques: **HandSense** uses four strategically positioned capacitive sensors for detecting and classifying grasp patterns on mobile phones. The use of custom-built high-resolution sensors allows detecting proximity and avoids the need to cover the whole device surface with sensors. User tests showed a recognition rate of 81%, comparable to that of a system with 72 binary sensors. **FlyEye** uses optical fiber bundles connected to a camera for detecting touch and proximity on arbitrarily shaped surfaces. It allows rapid prototyping of touch- and grasp-sensitive objects and requires only very limited electronics knowledge. For FlyEye I developed a *relative calibration* algorithm that allows determining the locations of groups of sensors whose arrangement is not known. **TDRtouch** extends Time Domain Reflectometry (TDR), a technique traditionally used for inspecting cable faults, for touch and grasp sensing. TDRtouch is able to locate touches along a wire, allowing designers to rapidly prototype and implement modular, extremely thin, and flexible grasp-sensitive surfaces. I summarize how these technologies cater to different requirements and significantly expand the design space for grasp-sensitive objects. Furthermore, I discuss challenges for making sense of raw grasp information and categorize interactions. Traditional application scenarios for grasp sensing use only the grasp sensor's data, and only for mode-switching. I argue that data from grasp sensors is part of the general usage context and should be only used in combination with other context information. For analyzing and discussing the possible meanings of grasp types, I created the GRASP model. It describes five categories of influencing factors that determine how we grasp an object: *Goal* -- what we want to do with the object, *Relationship* -- what we know and feel about the object we want to grasp, *Anatomy* -- hand shape and learned movement patterns, *Setting* -- surrounding and environmental conditions, and *Properties* -- texture, shape, weight, and other intrinsics of the object I conclude the dissertation with a discussion of upcoming challenges in grasp sensing and grasp interaction, and provide suggestions for implementing robust and usable grasp interaction.Die Fähigkeit, Gegenstände mit unseren Händen zu greifen, erlaubt uns, diese vielfältig zu manipulieren. Werkzeuge erweitern unsere Fähigkeiten noch, indem sie Genauigkeit, Kraft und Form unserer Hände an die Aufgabe anpassen. Digitale Werkzeuge, beispielsweise Mobiltelefone oder Computermäuse, erlauben uns auch, die Fähigkeiten unseres Gehirns und unserer Sinnesorgane zu erweitern. Diese Geräte verfügen bereits über Sensoren und Recheneinheiten. Aber auch viele andere Werkzeuge und Objekte lassen sich mit winzigen, effizienten Sensoren und Recheneinheiten erweitern. Dies erlaubt greifbaren Objekten, mehr über den Benutzer zu erfahren, der sie greift - und ermöglicht es, ihn bei der Erreichung seines Ziels zu unterstützen. Zum Beispiel könnte die Art und Weise, in der wir ein Mobiltelefon halten, verraten, ob wir ein Foto aufnehmen oder einen Freund anrufen wollen - und damit als Shortcut für diese Aktionen dienen. Eine Bohrmaschine könnte erkennen, ob der Benutzer sie auch wirklich sicher hält und den Dienst verweigern, falls dem nicht so ist. Und eine Computermaus könnte zwischen absichtlichen und unabsichtlichen Mausbewegungen unterscheiden und letztere ignorieren. Diese Dissertation gibt einen Überblick über Grifferkennung (*grasp sensing*) für die Mensch-Maschine-Interaktion, mit einem Fokus auf Technologien zur Implementierung griffempfindlicher Oberflächen und auf Herausforderungen beim Design griffempfindlicher Benutzerschnittstellen. Sie umfasst drei primäre Beiträge zum wissenschaftlichen Forschungsstand: einen umfassenden Überblick über die bisherige Forschung zu menschlichem Greifen und Grifferkennung, eine detaillierte Beschreibung dreier neuer Prototyping-Werkzeuge für griffempfindliche Oberflächen und ein Framework für Analyse und Design von griff-basierter Interaktion (*grasp interaction*). Seit nahezu einem Jahrhundert erforschen Wissenschaftler menschliches Greifen. Mein Überblick über den Forschungsstand beschreibt Definitionen, Klassifikationen und Modelle menschlichen Greifens. In einigen wenigen Studien wurde bisher Greifen in alltäglichen Situationen untersucht. Diese fanden eine deutlich größere Diversität in den Griffmuster als in existierenden Taxonomien beschreibbar. Diese Diversität erschwert es, bestimmten Griffmustern eine Absicht des Benutzers zuzuordnen. Um verwandte Arbeiten und eigene Forschungsergebnisse zu strukturieren, formalisiere ich einen allgemeinen Ablauf der Grifferkennung. Dieser besteht aus dem *Erfassen* von Sensorwerten, der *Identifizierung* der damit verknüpften Griffe und der *Interpretation* der Bedeutung des Griffes. In einem umfassenden Überblick über verwandte Arbeiten zeige ich, dass die Implementierung von griffempfindlichen Oberflächen immer noch ein herausforderndes Problem ist, dass Forscher regelmäßig keine Ahnung von verwandten Arbeiten in benachbarten Forschungsfeldern haben, und dass intuitive Griffinteraktion bislang wenig Aufmerksamkeit erhalten hat. Um das erstgenannte Problem zu lösen, habe ich drei neuartige Sensortechniken für griffempfindliche Oberflächen entwickelt. Diese mindern jeweils eine oder mehrere Schwächen traditioneller Sensortechniken: **HandSense** verwendet vier strategisch positionierte kapazitive Sensoren um Griffmuster zu erkennen. Durch die Verwendung von selbst entwickelten, hochauflösenden Sensoren ist es möglich, schon die Annäherung an das Objekt zu erkennen. Außerdem muss nicht die komplette Oberfläche des Objekts mit Sensoren bedeckt werden. Benutzertests ergaben eine Erkennungsrate, die vergleichbar mit einem System mit 72 binären Sensoren ist. **FlyEye** verwendet Lichtwellenleiterbündel, die an eine Kamera angeschlossen werden, um Annäherung und Berührung auf beliebig geformten Oberflächen zu erkennen. Es ermöglicht auch Designern mit begrenzter Elektronikerfahrung das Rapid Prototyping von berührungs- und griffempfindlichen Objekten. Für FlyEye entwickelte ich einen *relative-calibration*-Algorithmus, der verwendet werden kann um Gruppen von Sensoren, deren Anordnung unbekannt ist, semi-automatisch anzuordnen. **TDRtouch** erweitert Time Domain Reflectometry (TDR), eine Technik die üblicherweise zur Analyse von Kabelbeschädigungen eingesetzt wird. TDRtouch erlaubt es, Berührungen entlang eines Drahtes zu lokalisieren. Dies ermöglicht es, schnell modulare, extrem dünne und flexible griffempfindliche Oberflächen zu entwickeln. Ich beschreibe, wie diese Techniken verschiedene Anforderungen erfüllen und den *design space* für griffempfindliche Objekte deutlich erweitern. Desweiteren bespreche ich die Herausforderungen beim Verstehen von Griffinformationen und stelle eine Einteilung von Interaktionsmöglichkeiten vor. Bisherige Anwendungsbeispiele für die Grifferkennung nutzen nur Daten der Griffsensoren und beschränken sich auf Moduswechsel. Ich argumentiere, dass diese Sensordaten Teil des allgemeinen Benutzungskontexts sind und nur in Kombination mit anderer Kontextinformation verwendet werden sollten. Um die möglichen Bedeutungen von Griffarten analysieren und diskutieren zu können, entwickelte ich das GRASP-Modell. Dieses beschreibt fünf Kategorien von Einflussfaktoren, die bestimmen wie wir ein Objekt greifen: *Goal* -- das Ziel, das wir mit dem Griff erreichen wollen, *Relationship* -- das Verhältnis zum Objekt, *Anatomy* -- Handform und Bewegungsmuster, *Setting* -- Umgebungsfaktoren und *Properties* -- Eigenschaften des Objekts, wie Oberflächenbeschaffenheit, Form oder Gewicht. Ich schließe mit einer Besprechung neuer Herausforderungen bei der Grifferkennung und Griffinteraktion und mache Vorschläge zur Entwicklung von zuverlässiger und benutzbarer Griffinteraktion

    Effekte und Potenziale eines gebogenen interaktiven Displays

    Get PDF
    Ein heutiger Computerarbeitsplatz besteht normalerweise aus einer horizontalen Arbeitsfläche und mindestens einem vertikalen Bildschirm. Beide Orientierungen der Arbeitsbereiche haben Vorteile für einzelne Arbeitsschritte. Auf vertikalen Flächen ist beispielsweise das Lesen langer Texte ergonomischer, während das direkte Bearbeiten von Texten auf horizontalen Flächen weniger anstrengend ist. Der Wechsel zwischen den beiden Arbeitsbereichen ist jedoch umständlich, da die horizontale Arbeitsfläche häufig nicht digital ist. Doch selbst die steigende Verbreitung berührungsempfindlicher Bildschirme im horizontalen Arbeitsbereich (z.B. Tablets) löst dieses Problem nicht. Zwar bringen diese Geräte zum einen die Vorteile direkter Interaktion mit sich, führen aber zum anderen zur Frage, wie die digitalen Inhalte zwischen den unterschiedlich orientierten, digitalen Bereichen ausgetauscht werden. Eine Lösung hierfür ist die Kombination unterschiedlich orientierter Displays. Es gibt mehrere Ansätze diese zu kombinieren, jedoch sind die Displays dabei meistens physikalisch voneinander getrennt. Das führt dazu, dass der Nutzer die Displays zum einen eher als separate Einheiten wahrnimmt und zum anderen kein einfacher Übergang zwischen den Displays möglich ist. Eine Verbindungsart, die bis jetzt noch weitgehend unerforscht ist, ist die Kombination beider Displaybereiche durch eine gebogene Verbindung. Die Biegung stellt eine nahtlose Verbindung und einen unterbrechungsfreien Übergang zwischen den Displaybereichen her. Der Effekt eines solchen Übergangs auf die Nutzerinteraktion ist jedoch unbekannt. Die Biegung des Bildschirms eröffnet darüber hinaus auch die Möglichkeit für neuartige Visualisierungen, die von der nahtlosen Kombination unterschiedlicher Displayorientierungen profitieren. Außerdem können auch gewöhnliche, grafische Benutzerschnittstellen hinsichtlich der Displayform optimiert werden. Im Rahmen dieser Arbeit wird ein solches Display vorgestellt und dessen Effekte auf die Nutzerinteraktion und Potenziale für grafische Benutzerschnittstellen untersucht. Der Curve ist ein interaktives Display, das einen horizontalen und einen vertikalen Bereich durch eine nahtlose, gebogene Verbindung kombiniert. Im ersten Teil der Arbeit werden die Entwicklung der Displayform und die technische Umsetzung des Prototyps beschrieben. Anschließend wird im zweiten Teil der Einfluss der Displayform sowohl auf direkte als auch auf indirekte Interaktionsarten evaluiert. Außerdem wird der Curve um eine greifbare Benutzerschnittstelle erweitert und die Auswirkung der Displayform auf die Bedienbarkeit dieser Schnittstelle untersucht. Im dritten Teil werden zwei Visualisierungen und eine vorhandene, grafische Benutzerschnittstelle vorgestellt, die jeweils an die gebogene Displayform angepasst wurden. Die praktischen Erfahrungen aus den Entwicklungsprozessen werden dann in Form von Empfehlungen für vergleichbare Displayprojekte zusammengefasst. Am Ende der Arbeit stehen sowohl Ausgangspunkte für eine technische Weiterentwicklung, als auch weitere exemplarische Anwendungsszenarien, die von der gebogenen Displayform des Curve profitieren können.The working environment in a current office usually consists of a horizontal working area and at least one vertical digital display. Both workspace orientations offer specific advantages for a certain task. While reading a long documentis easier on a vertical display, editing a document is less exhausting on a horizontal working area. If a user wants to benefit from these advantages the working area has to be changed frequently, which is time-consuming as most of today’s horizontal areas are non-digital. This problem even remains as more and more interactive displays (e.g. tablets) are used on the horizontal surface because the content cannot be seamlessly transferred between them. Although these interactive horizontal displays offer direct interaction with digital content, transferring digital content between both display orientations is cumbersome. A solution for this problem is the combination of differently oriented working areas. There are different ways of combining display areas. Most of them still rely on physically separated displays. This hampers the transfer of documents from one display area to the other. The user also perceives the displays as separated areas. Another way, which could overcome these problems is a curved display connection. While the curved connection allows for a seamless transition between differently oriented display areas, it remains unclear how it simultaneously influences the interaction of the user. Besides this influence on the interaction a curved connection also allows for new ways of visualizing data using both display orientations in a single visualization or an adapted graphical user interface. This thesis presents an approach towards a curved connection of differently oriented display areas. The Curve is an interactive display that seamlessly combines a horizontal display area and a vertically inclined display area with a curved connection. The first part of this work presents the fundamental design of the Curve and its technical implementation in terms of hard- and software. Based on the constructed prototype several studies about the Curve’s influence on basic interaction techniques were conducted and are described in the second part of this thesis. These studies include direct interaction as well as indirect input using a pointing device and a first exploration of a graspable user interface. The next part describes the development of novel visualizations and a graphical user interface, which rely on the Curve’s display form. Lessons learned from these projects led to a first draft of guidelines for the development of similar displays and interfaces, which conclude the third part of this thesis. The last part summarizes the entire thesis and points at possible future steps like the technical improvement of the Curve’s technology and further application scenarios, which might also benefit from a curved display environment

    Remote tactile feedback on interactive surfaces

    Get PDF
    Direct touch input on interactive surfaces has become a predominating standard for the manipulation of digital information in our everyday lives. However, compared to our rich interchange with the physical world, the interaction with touch-based systems is limited in terms of flexibility of input and expressiveness of output. Particularly, the lack of tactile feedback greatly reduces the general usability of a touch-based system and hinders from a productive entanglement of the virtual information with the physical world. This thesis proposes remote tactile feedback as a novel method to provide programmed tactile stimuli supporting direct touch interactions. The overall principle is to spatially decouple the location of touch input (e.g. fingertip or hand) and the location of the tactile sensation on the user's body (e.g. forearm or back). Remote tactile feedback is an alternative concept which avoids particular challenges of existing approaches. Moreover, the principle provides inherent characteristics which can accommodate for the requirements of current and future touch interfaces. To define the design space, the thesis provides a structured overview of current forms of touch surfaces and identifies trends towards non-planar and non-rigid forms with more versatile input mechanisms. Furthermore, a classification highlights limitations of the current methods to generate tactile feedback on touch-based systems. The proposed notion of tactile sensory relocation is a form of sensory substitution. Underlying neurological and psychological principles corroborate the approach. Thus, characteristics of the human sense of touch and principles from sensory substitution help to create a technical and conceptual framework for remote tactile feedback. Three consecutive user studies measure and compare the effects of both direct and remote tactile feedback on the performance and the subjective ratings of the user. Furthermore, the experiments investigate different body locations for the application of tactile stimuli. The results show high subjective preferences for tactile feedback, regardless of its type of application. Additionally, the data reveals no significant differences between the effects of direct and remote stimuli. The results back the feasibility of the approach and provide parameters for the design of stimuli and the effective use of the concept. The main part of the thesis describes the systematical exploration and analysis of the inherent characteristics of remote tactile feedback. Four specific features of the principle are identified: (1) the simplification of the integration of cutaneous stimuli, (2) the transmission of proactive, reactive and detached feedback, (3) the increased expressiveness of tactile sensations and (4) the provision of tactile feedback during multi-touch. In each class, several prototypical remote tactile interfaces are used in evaluations to analyze the concept. For example, the PhantomStation utilizes psychophysical phenomena to reduce the number of single tactile actuators. An evaluation with the prototype compares standard actuator technologies with each other in order to enable simple and scalable implementations. The ThermalTouch prototype creates remote thermal stimuli to reproduce material characteristics on standard touchscreens. The results show a stable rate of virtual object discrimination based on remotely applied temperature profiles. The AutmotiveRTF system is implemented in a vehicle and supports the driver's input on the in-vehicle-infotainment system. A field study with the system focuses on evaluating the effects of proactive and reactive feedback on the user's performance. The main contributions of the dissertation are: First, the thesis introduces the principle of remote tactile feedback and defines a design space for this approach as an alternative method to provide non-visual cues on interactive surfaces. Second, the thesis describes technical examples to rapidly prototype remote tactile feedback systems. Third, these prototypes are deployed in several evaluations which highlight the beneficial subjective and objective effects of the approach. Finally, the thesis presents features and inherent characteristics of remote tactile feedback as a means to support the interaction on today's touchscreens and future interactive surfaces.Die Interaktion mit berührungsempfindlichen Oberflächen ist heute ein Standard für die Manipulation von digitaler Information. Jedoch weist die Bedienung dieser interaktiven Bildschirme starke Einschränkungen hinsichtlich der Flexibilität bei der Eingabe und der Ausdruckskraft der Ausgabe auf, wenn man sie mit den vielfältigen Möglichkeiten des Umgangs mit Objekten in unserer Alltagswelt vergleicht. Besonders die nicht vorhandenen Tastsinnesrückmeldungen vermindern stark die Benutzbarkeit solcher Systeme und verhindern eine effektive Verknüpfung von virtueller Information und physischer Welt. Die vorliegende Dissertation beschreibt den Ansatz der 'distalen taktilen Rückmeldungen' als neuartige Möglichkeit zur Vermittlung programmierter Tastsinnesreize an Benutzer interaktiver Oberflächen. Das Grundprinzip dabei ist die räumliche Trennung zwischen der Eingabe durch Berührung (z.B. mit der Fingerspitze) und dem daraus resultierenden taktilen Reiz am Körper der Benutzer (z.B. am Rücken). Dabei vermeidet das Konzept der distalen taktilen Rückmeldungen einzelne technische und konzeptionelle Nachteile existierender Ansätze. Zusätzlich bringt es Interaktionsmöglichkeiten mit sich, die den Eigenheiten der Interaktion mit aktuellen und auch zukünftigen berührungsempfindlichen Oberflächen Rechnung tragen. Zu Beginn zeigt ein Überblick zu relevanten Arbeiten den aktuellen Forschungstrend hin zu nicht-flachen und verformbaren berührungsempfindlichen Oberflächen sowie zu vielfältigeren Eingabemethoden. Eine Klassifizierung ordnet existierende technische Verfahren zur Erzeugung von künstlichen Tastsinnesreizen und stellt jeweils konzeptuelle und technische Herausforderungen dar. Der in dieser Arbeit vorgeschlagene Ansatz der Verlagerung von Tastsinnesreizen ist eine Form der sensorischen Substitution, zugrunde liegende neurologische und psychologische Prinzipien untermauern das Vorgehen. Die Wirkprinzipien des menschlichen Tastsinnes und die Systeme zur sensorischen Substitution liefern daher konzeptionelle und technische Richtlinien zur Umsetzung der distalen taktilen Rückmeldungen. Drei aufeinander aufbauende Benutzerstudien vergleichen die Auswirkungen von direkten und distalen taktilen Rückmeldungen auf die Leistung und das Verhalten von Benutzern sowie deren subjektive Bewertung der Interaktion. Außerdem werden in den Experimenten die Effekte von Tastsinnesreizen an verschiedenen Körperstellen untersucht. Die Ergebnisse zeigen starke Präferenzen für Tastsinnesrückmeldungen, unabhängig von deren Applikationsort. Die Daten ergeben weiterhin keine signifikanten Unterschiede bei den quantitativen Effekten von direktem und distalen Rückmeldungen. Diese Ergebnisse befürworten die Realisierbarkeit des Ansatzes und zeigen Richtlinien für weitere praktische Umsetzungen auf. Der Hauptteil der Dissertation beschreibt die systematische Untersuchung und Analyse der inhärenten Möglichkeiten, die sich aus der Vermittlung distaler taktiler Rückmeldungen ergeben. Vier verschiedene Charakteristika werden identifiziert: (1) die vereinfachte Integration von Tastsinnesreizen, (2) die Vermittlung von proaktiven, reaktiven und entkoppelten Rückmeldungen, (3) die erhöhte Bandbreite der taktilen Signale und (4) die Darstellung von individuellen Tastsinnesreizen für verschiedene Kontaktpunkte mit der berührungsempfindlichen Oberfläche. Jedes dieser Prinzipien wird durch prototypische Systeme umgesetzt und in Benutzerstudien analysiert. Beispielsweise nutzt das System PhantomStation psychophysikalische Illusionen, um die Anzahl der einzelnen Reizgeber zu reduzieren. In einer Evaluierung des Prototypen werden mehrere Aktuatortechnologien verglichen, um einfache und skalierbare Ansätze zu identifizieren. Der ThermalTouch-Prototyp wird dazu genutzt, distale thermale Reize zu vermitteln, um so Materialeigenschaften auf Berührungsbildschirmen darstellen zu können. Eine Benutzerstudie zeigt, dass sich auf Basis dieser Temperaturverläufe virtuelle Objekte unterscheiden lassen. Das AutomotiveRTF-System wird schließlich in ein Kraftfahrzeug integriert, um den Fahrer bei der Eingabe auf dem Informations- und Unterhaltungssystem zu unterstützen. Eine Feldstudie untersucht die Auswirkungen der proaktiven und reaktiven Rückmeldungen auf die Benutzerleistung. Die vorliegende Dissertation leistet mehrere Beiträge zur Mensch-Maschine-Interaktion: Das Prinzip der distalen taktilen Rückmeldungen wird eingeführt als Alternative zur Erzeugung nicht-visueller Rückmeldungen auf interaktiven Oberflächen. Es werden technische Verfahrensweisen zur prototypischen Implementierung solcher Systeme vorgeschlagen. Diese technischen Prototypen werden in einer Vielzahl verschiedener Benutzerstudien eingesetzt, welche die quantitativen und qualitativen Vorteile des Ansatzes aufzeigen. Schließlich wird gezeigt, wie sich das Prinzip zur Unterstützung heutiger und zukünftiger Interaktionsformen mit berührungsempfindlichen Bildschirmen nutzen lässt

    Organic User Interfaces for InteractiveInterior Design

    Get PDF
    PhD ThesisOrganic User Interfaces (OUIs) are flexible, actuated, digital interfaces characterized by being aesthetically pleasing, physically manipulated and ubiquitously embedded within real-world environments. I postulate that OUIs have specific qualities that offer great potential to realize the vision of smart spaces and ubiquitous computing environments. This thesis makes the case for embedding OUI interaction into architectural spaces, interior elements and decorative artefacts using smart materials – a concept I term ‘OUI Interiors’. Through this thesis, I investigate: 1) What interactive materials and making techniques can be used to design and build OUIs? 2) What OUI decorative artefacts and interior elements can we create? and 3) What can we learn for design by situating OUI interiors? These key research questions form the basis of this PhD and guide all stages of inquiry, analysis, and reporting. Grounded by the state-of-the-art of Interactive Interiors in both research and practice, I developed new techniques of seamlessly embedding smart materials into interior finishing materials via research through design exploration (in the form of a Swatchbook). I also prototyped a number of interactive decorative objects that change shape and colour as a form of organicactuation, in response to seamless soft-sensing (presented in a Product Catalogue). These inspirational artefacts include table-runners, wall-art, pattern-changing wall-tiles, furry-throw, vase, cushion and matching painting, rug, objets d’art and tasselled curtain. Moreover, my situated studies of how people interact idiosyncratically with interactive decorative objects provide insights and reflections on the overall material experience. Through multi-disciplinary collaboration, I have also put these materials in the hands of designers to realize the potentials and limitations of such a paradigm and design three interactive spaces. The results of my research are materialized in a tangible outcome (a Manifesto) exploring design opportunities of OUI Interior Design, and critically considering new aesthetic possibilities

    Grasp-sensitive surfaces

    Get PDF
    Grasping objects with our hands allows us to skillfully move and manipulate them. Hand-held tools further extend our capabilities by adapting precision, power, and shape of our hands to the task at hand. Some of these tools, such as mobile phones or computer mice, already incorporate information processing capabilities. Many other tools may be augmented with small, energy-efficient digital sensors and processors. This allows for graspable objects to learn about the user grasping them - and supporting the user's goals. For example, the way we grasp a mobile phone might indicate whether we want to take a photo or call a friend with it - and thus serve as a shortcut to that action. A power drill might sense whether the user is grasping it firmly enough and refuse to turn on if this is not the case. And a computer mouse could distinguish between intentional and unintentional movement and ignore the latter. This dissertation gives an overview of grasp sensing for human-computer interaction, focusing on technologies for building grasp-sensitive surfaces and challenges in designing grasp-sensitive user interfaces. It comprises three major contributions: a comprehensive review of existing research on human grasping and grasp sensing, a detailed description of three novel prototyping tools for grasp-sensitive surfaces, and a framework for analyzing and designing grasp interaction: For nearly a century, scientists have analyzed human grasping. My literature review gives an overview of definitions, classifications, and models of human grasping. A small number of studies have investigated grasping in everyday situations. They found a much greater diversity of grasps than described by existing taxonomies. This diversity makes it difficult to directly associate certain grasps with users' goals. In order to structure related work and own research, I formalize a generic workflow for grasp sensing. It comprises *capturing* of sensor values, *identifying* the associated grasp, and *interpreting* the meaning of the grasp. A comprehensive overview of related work shows that implementation of grasp-sensitive surfaces is still hard, researchers often are not aware of related work from other disciplines, and intuitive grasp interaction has not yet received much attention. In order to address the first issue, I developed three novel sensor technologies designed for grasp-sensitive surfaces. These mitigate one or more limitations of traditional sensing techniques: **HandSense** uses four strategically positioned capacitive sensors for detecting and classifying grasp patterns on mobile phones. The use of custom-built high-resolution sensors allows detecting proximity and avoids the need to cover the whole device surface with sensors. User tests showed a recognition rate of 81%, comparable to that of a system with 72 binary sensors. **FlyEye** uses optical fiber bundles connected to a camera for detecting touch and proximity on arbitrarily shaped surfaces. It allows rapid prototyping of touch- and grasp-sensitive objects and requires only very limited electronics knowledge. For FlyEye I developed a *relative calibration* algorithm that allows determining the locations of groups of sensors whose arrangement is not known. **TDRtouch** extends Time Domain Reflectometry (TDR), a technique traditionally used for inspecting cable faults, for touch and grasp sensing. TDRtouch is able to locate touches along a wire, allowing designers to rapidly prototype and implement modular, extremely thin, and flexible grasp-sensitive surfaces. I summarize how these technologies cater to different requirements and significantly expand the design space for grasp-sensitive objects. Furthermore, I discuss challenges for making sense of raw grasp information and categorize interactions. Traditional application scenarios for grasp sensing use only the grasp sensor's data, and only for mode-switching. I argue that data from grasp sensors is part of the general usage context and should be only used in combination with other context information. For analyzing and discussing the possible meanings of grasp types, I created the GRASP model. It describes five categories of influencing factors that determine how we grasp an object: *Goal* -- what we want to do with the object, *Relationship* -- what we know and feel about the object we want to grasp, *Anatomy* -- hand shape and learned movement patterns, *Setting* -- surrounding and environmental conditions, and *Properties* -- texture, shape, weight, and other intrinsics of the object I conclude the dissertation with a discussion of upcoming challenges in grasp sensing and grasp interaction, and provide suggestions for implementing robust and usable grasp interaction.Die Fähigkeit, Gegenstände mit unseren Händen zu greifen, erlaubt uns, diese vielfältig zu manipulieren. Werkzeuge erweitern unsere Fähigkeiten noch, indem sie Genauigkeit, Kraft und Form unserer Hände an die Aufgabe anpassen. Digitale Werkzeuge, beispielsweise Mobiltelefone oder Computermäuse, erlauben uns auch, die Fähigkeiten unseres Gehirns und unserer Sinnesorgane zu erweitern. Diese Geräte verfügen bereits über Sensoren und Recheneinheiten. Aber auch viele andere Werkzeuge und Objekte lassen sich mit winzigen, effizienten Sensoren und Recheneinheiten erweitern. Dies erlaubt greifbaren Objekten, mehr über den Benutzer zu erfahren, der sie greift - und ermöglicht es, ihn bei der Erreichung seines Ziels zu unterstützen. Zum Beispiel könnte die Art und Weise, in der wir ein Mobiltelefon halten, verraten, ob wir ein Foto aufnehmen oder einen Freund anrufen wollen - und damit als Shortcut für diese Aktionen dienen. Eine Bohrmaschine könnte erkennen, ob der Benutzer sie auch wirklich sicher hält und den Dienst verweigern, falls dem nicht so ist. Und eine Computermaus könnte zwischen absichtlichen und unabsichtlichen Mausbewegungen unterscheiden und letztere ignorieren. Diese Dissertation gibt einen Überblick über Grifferkennung (*grasp sensing*) für die Mensch-Maschine-Interaktion, mit einem Fokus auf Technologien zur Implementierung griffempfindlicher Oberflächen und auf Herausforderungen beim Design griffempfindlicher Benutzerschnittstellen. Sie umfasst drei primäre Beiträge zum wissenschaftlichen Forschungsstand: einen umfassenden Überblick über die bisherige Forschung zu menschlichem Greifen und Grifferkennung, eine detaillierte Beschreibung dreier neuer Prototyping-Werkzeuge für griffempfindliche Oberflächen und ein Framework für Analyse und Design von griff-basierter Interaktion (*grasp interaction*). Seit nahezu einem Jahrhundert erforschen Wissenschaftler menschliches Greifen. Mein Überblick über den Forschungsstand beschreibt Definitionen, Klassifikationen und Modelle menschlichen Greifens. In einigen wenigen Studien wurde bisher Greifen in alltäglichen Situationen untersucht. Diese fanden eine deutlich größere Diversität in den Griffmuster als in existierenden Taxonomien beschreibbar. Diese Diversität erschwert es, bestimmten Griffmustern eine Absicht des Benutzers zuzuordnen. Um verwandte Arbeiten und eigene Forschungsergebnisse zu strukturieren, formalisiere ich einen allgemeinen Ablauf der Grifferkennung. Dieser besteht aus dem *Erfassen* von Sensorwerten, der *Identifizierung* der damit verknüpften Griffe und der *Interpretation* der Bedeutung des Griffes. In einem umfassenden Überblick über verwandte Arbeiten zeige ich, dass die Implementierung von griffempfindlichen Oberflächen immer noch ein herausforderndes Problem ist, dass Forscher regelmäßig keine Ahnung von verwandten Arbeiten in benachbarten Forschungsfeldern haben, und dass intuitive Griffinteraktion bislang wenig Aufmerksamkeit erhalten hat. Um das erstgenannte Problem zu lösen, habe ich drei neuartige Sensortechniken für griffempfindliche Oberflächen entwickelt. Diese mindern jeweils eine oder mehrere Schwächen traditioneller Sensortechniken: **HandSense** verwendet vier strategisch positionierte kapazitive Sensoren um Griffmuster zu erkennen. Durch die Verwendung von selbst entwickelten, hochauflösenden Sensoren ist es möglich, schon die Annäherung an das Objekt zu erkennen. Außerdem muss nicht die komplette Oberfläche des Objekts mit Sensoren bedeckt werden. Benutzertests ergaben eine Erkennungsrate, die vergleichbar mit einem System mit 72 binären Sensoren ist. **FlyEye** verwendet Lichtwellenleiterbündel, die an eine Kamera angeschlossen werden, um Annäherung und Berührung auf beliebig geformten Oberflächen zu erkennen. Es ermöglicht auch Designern mit begrenzter Elektronikerfahrung das Rapid Prototyping von berührungs- und griffempfindlichen Objekten. Für FlyEye entwickelte ich einen *relative-calibration*-Algorithmus, der verwendet werden kann um Gruppen von Sensoren, deren Anordnung unbekannt ist, semi-automatisch anzuordnen. **TDRtouch** erweitert Time Domain Reflectometry (TDR), eine Technik die üblicherweise zur Analyse von Kabelbeschädigungen eingesetzt wird. TDRtouch erlaubt es, Berührungen entlang eines Drahtes zu lokalisieren. Dies ermöglicht es, schnell modulare, extrem dünne und flexible griffempfindliche Oberflächen zu entwickeln. Ich beschreibe, wie diese Techniken verschiedene Anforderungen erfüllen und den *design space* für griffempfindliche Objekte deutlich erweitern. Desweiteren bespreche ich die Herausforderungen beim Verstehen von Griffinformationen und stelle eine Einteilung von Interaktionsmöglichkeiten vor. Bisherige Anwendungsbeispiele für die Grifferkennung nutzen nur Daten der Griffsensoren und beschränken sich auf Moduswechsel. Ich argumentiere, dass diese Sensordaten Teil des allgemeinen Benutzungskontexts sind und nur in Kombination mit anderer Kontextinformation verwendet werden sollten. Um die möglichen Bedeutungen von Griffarten analysieren und diskutieren zu können, entwickelte ich das GRASP-Modell. Dieses beschreibt fünf Kategorien von Einflussfaktoren, die bestimmen wie wir ein Objekt greifen: *Goal* -- das Ziel, das wir mit dem Griff erreichen wollen, *Relationship* -- das Verhältnis zum Objekt, *Anatomy* -- Handform und Bewegungsmuster, *Setting* -- Umgebungsfaktoren und *Properties* -- Eigenschaften des Objekts, wie Oberflächenbeschaffenheit, Form oder Gewicht. Ich schließe mit einer Besprechung neuer Herausforderungen bei der Grifferkennung und Griffinteraktion und mache Vorschläge zur Entwicklung von zuverlässiger und benutzbarer Griffinteraktion
    corecore