73 research outputs found

    Are NLP Models Good at Tracing Thoughts: An Overview of Narrative Understanding

    Full text link
    Narrative understanding involves capturing the author's cognitive processes, providing insights into their knowledge, intentions, beliefs, and desires. Although large language models (LLMs) excel in generating grammatically coherent text, their ability to comprehend the author's thoughts remains uncertain. This limitation hinders the practical applications of narrative understanding. In this paper, we conduct a comprehensive survey of narrative understanding tasks, thoroughly examining their key features, definitions, taxonomy, associated datasets, training objectives, evaluation metrics, and limitations. Furthermore, we explore the potential of expanding the capabilities of modularized LLMs to address novel narrative understanding tasks. By framing narrative understanding as the retrieval of the author's imaginative cues that outline the narrative structure, our study introduces a fresh perspective on enhancing narrative comprehension

    The Best Explanation:Beyond Right and Wrong in Question Answering

    Get PDF

    Evaluating Machine Intelligence with Question Answering

    Get PDF
    Humans ask questions to learn about the world and to test knowledge understanding. The ability to ask questions combines aspects of intelligence unique to humans: language understanding, knowledge representation, and reasoning. Thus, building systems capable of intelligent question answering (QA) is a grand goal of natural language processing (NLP). To measure progress in NLP, we create "exams" for computer systems and compare their effectiveness against a reference point---often based on humans. How precisely we measure progress depends on whether we are building computer systems that optimize human satisfaction in information-seeking tasks or that measure progress towards intelligent QA. In the first part of this dissertation, we explore each goal in turn, how they differ, and describe their relationship to QA formats. As an example of an information-seeking evaluation, we introduce a new dialog QA task paired with a new evaluation method. Afterward, we turn our attention to using QA to evaluate machine intelligence. A good evaluation should be able to discriminate between lesser and more capable QA models. This dissertation explores three ways to improve the discriminative power of QA evaluations: (1) dynamic weighting of test questions, (2) a format that by construction tests multiple levels of knowledge, and (3) evaluation data that is created through human-computer collaboration. By dynamically weighting test questions, we challenge a foundational assumption of the de facto standard in QA evaluation---the leaderboard. Namely, we contend that contrary to nearly all QA and NLP evaluations which implicitly assign equal weights to examples by averaging scores, that examples are not equally useful for estimating machine (or human) QA ability. As any student may tell you, not all questions on an exam are equally difficult and in the worst-case questions are unsolvable. Drawing on decades of research in educational testing, we propose adopting an alternative evaluation methodology---Item Response Theory---that is widely used to score human exams (e.g., the SAT). By dynamically weighting questions, we show that this improves the reliability of leaderboards in discriminating between models of differing QA ability while also being helpful in the construction of new evaluation datasets. Having improved the scoring of models, we next turn to improving the format and data in QA evaluations. Our idea is simple. In most QA tasks (e.g., Jeopardy!), each question tests a single level of knowledge; in our task (the trivia game Quizbowl), we test multiple levels of knowledge with each question. Since each question tests multiple levels of knowledge, this decreases the likelihood that we learn nothing about the difference between two models (i.e., they are both correct or both wrong), which substantially increases discriminative power. Despite the improved format, we next show that while our QA models defeat accomplished trivia players, that they are overly reliant on brittle pattern matching, which indicates a failure to intelligently answer questions. To mitigate this problem, we introduce a new framework for building evaluation data where humans and machines cooperatively craft trivia questions that are difficult to answer through clever pattern matching tricks alone---while being no harder for humans. We conclude by sketching a broader vision for QA evaluation that combines the three components of evaluation we improve---scoring, format, and data---to create living evaluations and re-imagine the role of leaderboards

    Beyond Question Answering: Understanding the Information Need of the User

    Get PDF
    Intelligent interaction between humans and computers has been a dream of artificial intelligence since the beginning of digital era and one of the original motivations behind the creation of artificial intelligence. A key step towards the achievement of such an ambitious goal is to enable the Question Answering systems understand the information need of the user. In this thesis, we attempt to enable the QA system's ability to understand the user's information need by three approaches. First, an clarification question generation method is proposed to help the user clarify the information need and bridge information need gap between QA system and the user. Next, a translation based model is obtained from the large archives of Community Question Answering data, to model the information need behind a question and boost the performance of question recommendation. Finally, a fine-grained classification framework is proposed to enable the systems to recommend answered questions based on information need satisfaction

    24th Nordic Conference on Computational Linguistics (NoDaLiDa)

    Get PDF

    Domain Robustness in Multi-modality Learning and Visual Question Answering

    Get PDF
    Humans perceive the world via multiple modalities, as information from a single modality is usually partial and incomplete. This observation motivates the development of machine learning algorithms capable of handling multi-modal data and performing intelligent reasoning. The recent resurgence of deep learning brings both opportunities and challenges to multi-modal reasoning. On the one hand, its strong representation learning capability provides a unified approach to represent information across multiple modalities. On the other hand, properly training such models typically requires enormous data, which is not always feasible especially for the multi-modal setting. One promising direction to mitigate the lack of data for deep learning models is to transfer knowledge (e.g., gained from solving related problems) to low-resource domains. This procedure is known as transfer learning or domain adaptation, and it has demonstrated great success in various visual and linguistic applications. However, how to effectively transfer knowledge in a multi-modality setting remains a research question. In this thesis, we choose multi-modal reasoning as our target task and aim at improving the performance of deep neural networks on low-resource domains via domain adaptation. We first briefly discuss our prior work about advertisement understanding (as a typical multi-modal reasoning problem) and share our experience from addressing the data-availability challenge. Next, we turn to visual question answering, a more general problem that involves more complicated reasoning. We evaluate mainstream VQA models and classic single-modal domain adaptation strategies and show that existing methods usually suffer significant performance degradation when directly apply to the multi-modal setting. We measure the domain gaps in different modalities and design an effective strategy to manually control domain shifts on individual modalities, which helps better understand the problem. Lastly, we present a systematic study across real datasets to answer a few fundamental questions regarding knowledge transfer in VQA, such as the sensitivity of various models towards different types of supervisions (i.e. unsupervised, self-supervised, semi-supervised, and fully supervised). We conclude by sharing the limitations and our vision for future research directions

    Domain adaptation in Natural Language Processing

    Get PDF
    Domain adaptation has received much attention in the past decade. It has been shown that domain knowledge is paramount for building successful Natural Language Processing (NLP) applications. To investigate the domain adaptation problem, we conduct several experiments from different perspectives. First, we automatically adapt sentiment dictionaries for predicting the financial outcomes “excess return” and “volatility”. In these experiments, we compare manual adaptation of the domain-general dictionary with automatic adaptation, and manual adaptation with a combination consisting of first manual, then automatic adaptation. We demonstrate that automatic adaptation performs better than manual adaptation, namely the automatically adapted sentiment dictionary outperforms the previous state of the art in predicting excess return and volatility. Furthermore, we perform qualitative and quantitative analyses finding that annotation based on an expert’s a priori belief about a word’s meaning is error-prone – the meaning of a word can only be recognized in the context that it appears in. Second, we develop the temporal transfer learning approach to account for the language change in social media. The language of social media is changing rapidly – new words appear in the vocabulary, and new trends are constantly emerging. Temporal transfer-learning allows us to model these temporal dynamics in the document collection. We show that this method significantly improves the prediction of movie sales from discussions on social media forums. In particular, we illustrate the success of parameter transfer, the importance of textual information for financial prediction, and show that temporal transfer learning can capture temporal trends in the data by focusing on those features that are relevant in a particular time step, i.e., we obtain more robust models preventing overfitting. Third, we compare the performance of various domain adaptation models in low-resource settings, i.e., when there is a lack of large amounts of high-quality training data. This is an important issue in computational linguistics since the success of NLP applications primarily depends on the availability of training data. In real-world scenarios, the data is often too restricted and specialized. In our experiments, we evaluate different domain adaptation methods under these assumptions and find the most appropriate techniques for such a low-data problem. Furthermore, we discuss the conditions under which one approach substantially outperforms the other. Finally, we summarize our work on domain adaptation in NLP and discuss possible future work topics.Die Domänenanpassung hat in den letzten zehn Jahren viel Aufmerksamkeit erhalten. Es hat sich gezeigt, dass das Domänenwissen für die Erstellung erfolgreicher NLP-Anwendungen (Natural Language Processing) von größter Bedeutung ist. Um das Problem der Domänenanpassung zu untersuchen, führen wir mehrere Experimente aus verschiedenen Perspektiven durch. Erstens passen wir Sentimentlexika automatisch an, um die Überschussrendite und die Volatilität der Finanzergebnisse besser vorherzusagen. In diesen Experimenten vergleichen wir die manuelle Anpassung des allgemeinen Lexikons mit der automatischen Anpassung und die manuelle Anpassung mit einer Kombination aus erst manueller und dann automatischer Anpassung. Wir zeigen, dass die automatische Anpassung eine bessere Leistung erbringt als die manuelle Anpassung: das automatisch angepasste Sentimentlexikon übertrifft den bisherigen Stand der Technik bei der Vorhersage der Überschussrendite und der Volatilität. Darüber hinaus führen wir eine qualitative und quantitative Analyse durch und stellen fest, dass Annotationen, die auf der a priori Überzeugung eines Experten über die Bedeutung eines Wortes basieren, fehlerhaft sein können. Die Bedeutung eines Wortes kann nur in dem Kontext erkannt werden, in dem es erscheint. Zweitens entwickeln wir den Ansatz, den wir Temporal Transfer Learning benennen, um den Sprachwechsel in sozialen Medien zu berücksichtigen. Die Sprache der sozialen Medien ändert sich rasant – neue Wörter erscheinen im Vokabular und es entstehen ständig neue Trends. Temporal Transfer Learning ermöglicht es, diese zeitliche Dynamik in der Dokumentensammlung zu modellieren. Wir zeigen, dass diese Methode die Vorhersage von Filmverkäufen aus Diskussionen in Social-Media-Foren erheblich verbessert. In unseren Experimenten zeigen wir (i) den Erfolg der Parameterübertragung, (ii) die Bedeutung von Textinformationen für die finanzielle Vorhersage und (iii) dass Temporal Transfer Learning zeitliche Trends in den Daten erfassen kann, indem es sich auf die Merkmale konzentriert, die in einem bestimmten Zeitschritt relevant sind, d. h. wir erhalten robustere Modelle, die eine Überanpassung verhindern. Drittens vergleichen wir die Leistung verschiedener Domänenanpassungsmodelle in ressourcenarmen Umgebungen, d. h. wenn große Mengen an hochwertigen Trainingsdaten fehlen. Das ist ein wichtiges Thema in der Computerlinguistik, da der Erfolg der NLP-Anwendungen stark von der Verfügbarkeit von Trainingsdaten abhängt. In realen Szenarien sind die Daten oft zu eingeschränkt und spezialisiert. In unseren Experimenten evaluieren wir verschiedene Domänenanpassungsmethoden unter diesen Annahmen und finden die am besten geeigneten Techniken dafür. Darüber hinaus diskutieren wir die Bedingungen, unter denen ein Ansatz den anderen deutlich übertrifft. Abschließend fassen wir unsere Arbeit zur Domänenanpassung in NLP zusammen und diskutieren mögliche zukünftige Arbeitsthemen
    corecore