8 research outputs found

    Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations

    Get PDF
    The planning, control and execution of eye movements in 3D space relies on a distributed system of cortical and subcortical brain regions. Within this network, the Eye Fields have been described in animals as cortical regions in which electrical stimulation is able to trigger eye movements and influence their latency or accuracy. This review focuses on the Frontal Eye Field (FEF) a “hub” region located in Humans in the vicinity of the pre-central sulcus and the dorsal-most portion of the superior frontal sulcus. The straightforward localization of the FEF through electrical stimulation in animals is difficult to translate to the healthy human brain, particularly with non-invasive neuroimaging techniques. Hence, in the first part of this review, we describe attempts made to characterize the anatomical localization of this area in the human brain. The outcome of functional Magnetic Resonance Imaging (fMRI), Magneto-encephalography (MEG) and particularly, non-invasive mapping methods such a Transcranial Magnetic Stimulation (TMS) are described and the variability of FEF localization across individuals and mapping techniques are discussed. In the second part of this review, we will address the role of the FEF. We explore its involvement both in the physiology of fixation, saccade, pursuit, and vergence movements and in associated cognitive processes such as attentional orienting, visual awareness and perceptual modulation. Finally in the third part, we review recent evidence suggesting the high level of malleability and plasticity of these regions and associated networks to non-invasive stimulation. The exploratory, diagnostic, and therapeutic interest of such interventions for the modulation and improvement of perception in 3D space are discussed

    Perceptual consequences of reflexive eye movements: effects of exogenous attention and frontal stimulation

    Get PDF
    This thesis investigated the visual perceptual consequences of reflexive eye movements in humans. A multimodal approach involving the modulation of exogenous attention, and the perturbation of the right frontal eye field (rFEF), explored visual perceptual and oculomotor control functions. Stimulation of the rFEF by TMS and the presentation of stimuli (cues) in order to orient attention, were combined with the measurement of brain activity with EEG, and eye tracking. These methods allowed the investigation of brain function and cognitive processing during a task combining visually driven eye movements with visual motion discrimination. Perturbation of the rFEF provided evidence of dissociable roles in visual perception, shown by a facilitatory effect during involuntary eye movements and an inhibitory effect during eye movement suppression. The rFEF TMS effect at the behavioral level was accompanied by posterior alpha power modulation. Not only the visual perceptual but also the oculomotor control function of the rFEF were affected by TMS, as shown by the reduction in eye movement velocity. The modulation of attention by the presentation of cue stimuli led to effects that were not dependent on eye movements: a facilitatory effect of exogenous orienting of attention was observed when the motion discrimination task was performed simultaneously with the generation of reflexive eye movements, and again also during movement suppression. The effect of attention was reflected in EEG correlates of early visual perceptual processing. Taken together, these results allow generalization to real-world contexts or clinical conditions where visual perception may be compromised by involuntary or pathological eye movements, highlighting the fact that even during reflexive movements the potential involvement of attention is essential for understanding cognitive processing

    Investigation of brain networks for personalized rTMS in healthy subjects and patients with major depressive disorder: A translational study

    Get PDF
    Depression is a complex psychiatric disorder with emotional dysregulation at its core. The first line of treatment includes cognitive behaviour therapy and pharmacological antidepressants. However, up to one third of patients with depression fail to respond to these treatment interventions. The past decades have seen an increasing use of repetitive Transcranial Magnetic Stimulation (rTMS) in clinical studies, as an alternative treatment for depression. Several large-scale, multicentre randomized controlled trials have led the Food and Drugs Administration (FDA), USA to approve two rTMS protocols for clinical application in the treatment of depression - 10 Hz rTMS and intermittent Theta Burst Stimulation (iTBS). However, only 30-50% of patients receiving rTMS respond to the treatment. The large variability in response to rTMS likely stems from multiple reasons, one being the targeting method currently employed for delivering rTMS at the left dorsolateral prefrontal cortex (DLPFC). Previous functional connectivity studies have shown that stimulation at left DLPFC targets with larger negative correlation to the subgenual anterior cingulate cortex (sgACC) may result in greater therapeutic response than those with lower negative correlation. However, current use of rTMS ignores functional connectivity in choosing the left DLPFC target, thus largely discarding functional architectural differences of the brain across subjects. Furthermore, despite widespread clinical use of rTMS, the basic network mechanisms behind these rTMS protocols remain elusive. This work presents a novel personalization method of left DLPFC target selection based on their negative functional connectivity to the sgACC. The default mode network (DMN) is a large-scale brain network commonly involved in self-referential thought processing and plays an essential role in the pathophysiology of depression. I use the novel personalization method and identical study designs to delineate DMN mechanisms from a single session of 10 Hz rTMS and iTBS in healthy subjects. Arguably, an understanding of basic mechanisms of clinically relevant rTMS protocols in healthy subjects will help improve the current therapeutic effect of rTMS, and possibly expand the therapeutic role of rTMS. My work shows, for the first time, strong but different modulations of DMN connectivity by single personalized sessions of 10 Hz rTMS and iTBS. Such modulations can be predicted using the personality trait harm avoidance (HA). Given that initial results show that the method is robust and reproducible, its adaptation to patient cohorts is likely to result in improved therapeutic benefits. Therefore, the novel method of personalization is translated to clinical setting by using accelerated iTBS (aiTBS) in patients with depression. Additionally, a comparison is made between effects resulting from personalized and nonpersonalized (10-20 EEG system F3 position) aiTBS in patients with depression. By evaluating the DMN, and heart rate variability, I show precise modulatory effects of personalized aiTBS, which is not seen in the standard aiTBS group. The work presented here introduces an important method to reduce variability and increase precision in rTMS modulation by personalizing the left DLPFC target selection. Even though DMN and cardiac effects already point towards the advantage of personalization, the still preliminary analysis fails to show significant differences in treatment response. Lack of greater therapeutic benefits viii from personalized aiTBS in this ongoing study probably stems from a still limited sample size. In case personalization proves clinically advantageous to standard iTBS by the final sample size, this work can sediment the first step towards systems medicine in the field of psychiatry.2022-02-0

    Clinical Management and Evolving Novel Therapeutic Strategies for Patients with Brain Tumors

    Get PDF
    A dramatic increase in knowledge regarding the molecular biology of brain tumors has been established over the past few years, and this has lead to the development of novel therapeutic strategies for these patients. In this book a review of the options available for the clinical management of patients with these tumors are outlined. In addition advances in radiology both for pre-operative diagnostic purposes along with surgical planning are described. Furthermore a review of newer developments in chemotherapy along with the evolving field of photodynamic therapy both for intra-operative management and subsequent therapy is provided. A discussion of certain surgical management issues along with tumor induced epilepsy is included. Finally a discussion of the management of certain unique problems including brain metastases, brainstem glioma, central nervous system lymphoma along with issues involving patients with a brain tumor and pregnancy is provided

    Fronto-tectal white matter connectivity mediates facilitatory effects of non-invasive neurostimulation on visual detection

    Get PDF
    International audienceThe causal ability of pre-target FEF activity to modulate visual detection for perithreshold stimuli has been recently demonstrated in humans by means of non-invasive neurostimulation. Yet in spite of the network-distributed effects of these type of techniques, the white matter (WM) tracts and distant visual nodes contributing to such behavioral impact remain unknown. We hereby used individual data from a group of healthy human subjects, who received time-locked pulses of active or sham Transcranial Magnetic Stimulation (TMS) to the right Frontal Eye Field (FEF) region, and experienced increases in visual detection sensitivity. We then studied the extent to which interindividual differences in visual modulation might be dependent on the WM patterns linking the targeted area to other regions relevant for visuo-attentional behaviors. We report a statistically significant correlation between the probability of connection in a right fronto-tectal pathway (FEF-Superior Colliculus) and the modulation of visual sensitivity during a detection task. Our findings support the potential contribution of this pathway and the superior colliculus in the mediation of visual performance from frontal regions in humans. Furthermore, we also show the ability of a TMS/DTI correlational approach to contribute to the disambiguation of the specific long-range pathways driving network-wide neurostimulatory effects on behavior, anticipating their future role in guiding a more efficient use of focal neurostimulation

    Augmentation of Brain Function: Facts, Fiction and Controversy. Volume III: From Clinical Applications to Ethical Issues and Futuristic Ideas

    Get PDF
    The final volume in this tripartite series on Brain Augmentation is entitled “From Clinical Applications to Ethical Issues and Futuristic Ideas”. Many of the articles within this volume deal with translational efforts taking the results of experiments on laboratory animals and applying them to humans. In many cases, these interventions are intended to help people with disabilities in such a way so as to either restore or extend brain function. Traditionally, therapies in brain augmentation have included electrical and pharmacological techniques. In contrast, some of the techniques discussed in this volume add specificity by targeting select neural populations. This approach opens the door to where and how to promote the best interventions. Along the way, results have empowered the medical profession by expanding their understanding of brain function. Articles in this volume relate novel clinical solutions for a host of neurological and psychiatric conditions such as stroke, Parkinson’s disease, Huntington’s disease, epilepsy, dementia, Alzheimer’s disease, autism spectrum disorders (ASD), traumatic brain injury, and disorders of consciousness. In disease, symptoms and signs denote a departure from normal function. Brain augmentation has now been used to target both the core symptoms that provide specificity in the diagnosis of a disease, as well as other constitutional symptoms that may greatly handicap the individual. The volume provides a report on the use of repetitive transcranial magnetic stimulation (rTMS) in ASD with reported improvements of core deficits (i.e., executive functions). TMS in this regard departs from the present-day trend towards symptomatic treatment that leaves unaltered the root cause of the condition. In diseases, such as schizophrenia, brain augmentation approaches hold promise to avoid lengthy pharmacological interventions that are usually riddled with side effects or those with limiting returns as in the case of Parkinson’s disease. Brain stimulation can also be used to treat auditory verbal hallucination, visuospatial (hemispatial) neglect, and pain in patients suffering from multiple sclerosis. The brain acts as a telecommunication transceiver wherein different bandwidth of frequencies (brainwave oscillations) transmit information. Their baseline levels correlate with certain behavioral states. The proper integration of brain oscillations provides for the phenomenon of binding and central coherence. Brain augmentation may foster the normalization of brain oscillations in nervous system disorders. These techniques hold the promise of being applied remotely (under the supervision of medical personnel), thus overcoming the obstacle of travel in order to obtain healthcare. At present, traditional thinking would argue the possibility of synergism among different modalities of brain augmentation as a way of increasing their overall effectiveness and improving therapeutic selectivity. Thinking outside of the box would also provide for the implementation of brain-to-brain interfaces where techniques, proper to artificial intelligence, could allow us to surpass the limits of natural selection or enable communications between several individual brains sharing memories, or even a global brain capable of self-organization. Not all brains are created equal. Brain stimulation studies suggest large individual variability in response that may affect overall recovery/treatment, or modify desired effects of a given intervention. The subject’s age, gender, hormonal levels may affect an individual’s cortical excitability. In addition, this volume discusses the role of social interactions in the operations of augmenting technologies. Finally, augmenting methods could be applied to modulate consciousness, even though its neural mechanisms are poorly understood. Finally, this volume should be taken as a debate on social, moral and ethical issues on neurotechnologies. Brain enhancement may transform the individual into someone or something else. These techniques bypass the usual routes of accommodation to environmental exigencies that exalted our personal fortitude: learning, exercising, and diet. This will allow humans to preselect desired characteristics and realize consequent rewards without having to overcome adversity through more laborious means. The concern is that humans may be playing God, and the possibility of an expanding gap in social equity where brain enhancements may be selectively available to the wealthier individuals. These issues are discussed by a number of articles in this volume. Also discussed are the relationship between the diminishment and enhancement following the application of brain-augmenting technologies, the problem of “mind control” with BMI technologies, free will the duty to use cognitive enhancers in high-responsibility professions, determining the population of people in need of brain enhancement, informed public policy, cognitive biases, and the hype caused by the development of brain- augmenting approaches

    Immunohistochemical and electrophysiological investigation of E/I balance alterations in animal models of frontotemporal dementia

    Get PDF
    Behavioural variant frontotemporal dementia (bvFTD) is a neurodegenerative disease characterised by changes in behaviour. Apathy, behavioural disinhibition and stereotyped behaviours are the first symptoms to appear and all have a basis in reward and pleasure deficits. The ventral striatum and ventral regions of the globus pallidus are involved in reward and pleasure. It is therefore reasonable to suggest alterations in these regions may underpin bvFTD. One postulated contributory factor is alteration in E/I balance in striatal regions. GABAergic interneurons play a role in E/I balance, acting as local inhibitory brakes, they are therefore a rational target for research investigating early biological predictors of bvFTD. To investigate this, we will carry out immunohistochemical staining for GABAergic interneurons (parvalbumin and neuronal nitric oxide synthase) in striatal regions of brains taken from CHMP2B mice, a validated animal model of bvFTD. We hypothesise that there will be fewer GABAergic interneurons in the striatum which may lead to ‘reward-seeking’ behaviour in bvFTD. This will also enable us to investigate any preclinical alterations in interneuron expression within this region. Results will be analysed using a mixed ANOVA and if significant, post hoc t-tests will be used. The second part of our study will involve extracellular recordings from CHMP2B mouse brains using a multi-electrode array (MEA). This will enable us to determine if there are alterations in local field potentials (LFP) in preclinical and symptomatic animals. We will also be able to see if neuromodulators such as serotonin and dopamine effect LFPs after bath application. We will develop slice preparations to preserve pathways between the ventral tegmental area and the ventral pallidum, an output structure of the striatum, and the dorsal raphe nucleus and the VP. Using the MEA we will stimulate an endogenous release of dopamine and serotonin using the slice preparations as described above. This will enable us to see if there are any changes in LFPs after endogenous release of neuromodulators. We hypothesise there will be an increase in LFPs due to loss of GABAergic interneurons
    corecore