1 research outputs found

    Human-Understandable Explanations of Neural Networks

    Get PDF
    Das 21. Jahrhundert ist durch Datenströme enormen Ausmaßes gekennzeichnet. Dies hat die Popularität von Berechnungsmodellen, die sehr datenintensiv sind, wie z.B. neuronale Netze, drastisch erhöht. Aufgrund ihres großen Erfolges bei der Mustererkennung sind sie zu einem leistungsstarken Werkzeug für Vorhersagen, Klassifizierung und Empfehlungen in der Informatik, Statistik, Wirtschaft und vielen anderen Disziplinen geworden. Trotz dieser verbreiteten Anwendung sind neuronale Netze Blackbox-Modelle, d.h. sie geben keine leicht interpretierbaren Einblicke in die Struktur der approximierten Funktion oder in die Art und Weise, wie die Eingabe in die entsprechende Ausgabe umgewandelt wird. Die jüngste Forschung versucht, diese Blackboxen zu öffnen und ihr Innenleben zu enthüllen. Bisher haben sich die meisten Forschungsarbeiten darauf konzentriert, die Entscheidungen eines neuronalen Netzes auf einer sehr technischen Ebene und für ein Informatikfachpublikum zu erklären. Da neuronale Netze immer häufiger eingesetzt werden, auch von Menschen ohne tiefere Informatikkenntnisse, ist es von entscheidender Bedeutung, Ansätze zu entwickeln, die es ermöglichen, neuronale Netze auch für Nicht-Experten verständlich zu erklären. Das Ziel ist, dass Menschen verstehen können, warum das neuronale Netz bestimmte Entscheidungen getroffen hat, und dass sie das Ergebnis des Modells durchgehend interpretieren können. Diese Arbeit beschreibt ein Rahmenwerk, das es ermöglicht, menschlich verständliche Erklärungen für neuronale Netze zu liefern. Wir charakterisieren menschlich nachvollziehbare Erklärungen durch sieben Eigenschaften, nämlich Transparenz, Überprüfbarkeit, Vertrauen, Effektivität, Überzeugungskraft, Effizienz und Zufriedenheit. In dieser Arbeit stellen wir Erklärungsansätze vor, die diese Eigenschaften erfüllen. Zunächst stellen wir TransPer vor, ein Erklärungsrahmenwerk für neuronale Netze, insbesondere für solche, die in Produktempfehlungssystemen verwendet werden. Wir definieren Erklärungsmaße auf der Grundlage der Relevanz der Eingaben, um die Vorhersagequalität des neuronalen Netzes zu analysieren und KI-Anwendern bei der Verbesserung ihrer neuronalen Netze zu helfen. Dadurch werden Transparenz und Vertrauen geschaffen. In einem Anwendungsfall für ein Empfehlungssystem werden auch die Überzeugungskraft, die den Benutzer zum Kauf eines Produkts veranlasst, und die Zufriedenheit, die das Benutzererlebnis angenehmer macht, berücksichtigt. Zweitens, um die Blackbox des neuronalen Netzes zu öffnen, definieren wir eine neue Metrik für die Erklärungsqualität ObAlEx in der Bildklassifikation. Mit Hilfe von Objekterkennungsansätzen, Erklärungsansätzen und ObAlEx quantifizieren wir den Fokus von faltenden neuronalen Netzwerken auf die tatsächliche Evidenz. Dies bietet den Nutzern eine effektive Erklärung und Vertrauen, dass das Modell seine Klassifizierungsentscheidung tatsächlich auf der Grundlage des richtigen Teils des Eingabebildes getroffen hat. Darüber hinaus ermöglicht es die Überprüfbarkeit, d. h. die Möglichkeit für den Benutzer, dem Erklärungssystem mitzuteilen, dass sich das Modell auf die falschen Teile des Eingabebildes konzentriert hat. Drittens schlagen wir FilTag vor, einen Ansatz zur Erklärung von faltenden neuronalen Netzwerken durch die Kennzeichnung der Filter mit Schlüsselwörtern, die Bildklassen identifizieren. In ihrer Gesamtheit erklären diese Kennzeichnungen die Zweckbestimmung des Filters. Einzelne Bildklassifizierungen können dann intuitiv anhand der Kennzeichnungen der Filter, die das Eingabebild aktiviert, erklärt werden. Diese Erklärungen erhöhen die Überprüfbarkeit und das Vertrauen. Schließlich stellen wir FAIRnets vor, das darauf abzielt, Metadaten von neuronalen Netzen wie Architekturinformationen und Verwendungszweck bereitzustellen. Indem erklärt wird, wie das neuronale Netz aufgebaut ist werden neuronale Netzer transparenter; dadurch dass ein Nutzer schnell entscheiden kann, ob das neuronale Netz für den gewünschten Anwendungsfall relevant ist werden neuronale Netze effizienter. Alle vier Ansätze befassen sich mit der Frage, wie man Erklärungen von neuronalen Netzen für Nicht-Experten bereitstellen kann. Zusammen stellen sie einen wichtigen Schritt in Richtung einer für den Menschen verständlichen KI dar
    corecore