1,144 research outputs found

    Morphological properties of mass-spring networks for optimal locomotion learning

    Get PDF
    Robots have proven very useful in automating industrial processes. Their rigid components and powerful actuators, however, render them unsafe or unfit to work in normal human environments such as schools or hospitals. Robots made of compliant, softer materials may offer a valid alternative. Yet, the dynamics of these compliant robots are much more complicated compared to normal rigid robots of which all components can be accurately controlled. It is often claimed that, by using the concept of morphological computation, the dynamical complexity can become a strength. On the one hand, the use of flexible materials can lead to higher power efficiency and more fluent and robust motions. On the other hand, using embodiment in a closed-loop controller, part of the control task itself can be outsourced to the body dynamics. This can significantly simplify the additional resources required for locomotion control. To this goal, a first step consists in an exploration of the trade-offs between morphology, efficiency of locomotion, and the ability of a mechanical body to serve as a computational resource. In this work, we use a detailed dynamical model of a Mass–Spring–Damper (MSD) network to study these trade-offs. We first investigate the influence of the network size and compliance on locomotion quality and energy efficiency by optimizing an external open-loop controller using evolutionary algorithms. We find that larger networks can lead to more stable gaits and that the system’s optimal compliance to maximize the traveled distance is directly linked to the desired frequency of locomotion. In the last set of experiments, the suitability of MSD bodies for being used in a closed loop is also investigated. Since maximally efficient actuator signals are clearly related to the natural body dynamics, in a sense, the body is tailored for the task of contributing to its own control. Using the same simulation platform, we therefore study how the network states can be successfully used to create a feedback signal and how its accuracy is linked to the body size

    Body randomization reduces the sim-to-real gap for compliant quadruped locomotion

    Get PDF
    Designing controllers for compliant, underactuated robots is challenging and usually requires a learning procedure. Learning robotic control in simulated environments can speed up the process whilst lowering risk of physical damage. Since perfect simulations are unfeasible, several techniques are used to improve transfer to the real world. Here, we investigate the impact of randomizing body parameters during learning of CPG controllers in simulation. The controllers are evaluated on our physical quadruped robot. We find that body randomization in simulation increases chances of finding gaits that function well on the real robot

    EEG theta and Mu oscillations during perception of human and robot actions.

    Get PDF
    The perception of others' actions supports important skills such as communication, intention understanding, and empathy. Are mechanisms of action processing in the human brain specifically tuned to process biological agents? Humanoid robots can perform recognizable actions, but can look and move differently from humans, and as such, can be used in experiments to address such questions. Here, we recorded EEG as participants viewed actions performed by three agents. In the Human condition, the agent had biological appearance and motion. The other two conditions featured a state-of-the-art robot in two different appearances: Android, which had biological appearance but mechanical motion, and Robot, which had mechanical appearance and motion. We explored whether sensorimotor mu (8-13 Hz) and frontal theta (4-8 Hz) activity exhibited selectivity for biological entities, in particular for whether the visual appearance and/or the motion of the observed agent was biological. Sensorimotor mu suppression has been linked to the motor simulation aspect of action processing (and the human mirror neuron system, MNS), and frontal theta to semantic and memory-related aspects. For all three agents, action observation induced significant attenuation in the power of mu oscillations, with no difference between agents. Thus, mu suppression, considered an index of MNS activity, does not appear to be selective for biological agents. Observation of the Robot resulted in greater frontal theta activity compared to the Android and the Human, whereas the latter two did not differ from each other. Frontal theta thus appears to be sensitive to visual appearance, suggesting agents that are not sufficiently biological in appearance may result in greater memory processing demands for the observer. Studies combining robotics and neuroscience such as this one can allow us to explore neural basis of action processing on the one hand, and inform the design of social robots on the other

    Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    Get PDF
    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. They can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a walking robot is a challenging task. In this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a biomechanical walking robot. The turning information is transmitted as descending steering signals to the locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations as well as escaping from sharp corners or deadlocks. Using backbone joint control embedded in the locomotion control allows the robot to climb over small obstacles. Consequently, it can successfully explore and navigate in complex environments

    Reproducing Five Motor Behaviors in a Salamander Robot With Virtual Muscles and a Distributed CPG Controller Regulated by Drive Signals and Proprioceptive Feedback

    Get PDF
    Diverse locomotor behaviors emerge from the interactions between the spinal central pattern generator (CPG), descending brain signals and sensory feedback. Salamander motor behaviors include swimming, struggling, forward underwater stepping, and forward and backward terrestrial stepping. Electromyographic and kinematic recordings of the trunk show that each of these five behaviors is characterized by specific patterns of muscle activation and body curvature. Electrophysiological recordings in isolated spinal cords show even more diverse patterns of activity. Using numerical modeling and robotics, we explored the mechanisms through which descending brain signals and proprioceptive feedback could take advantage of the flexibility of the spinal CPG to generate different motor patterns. Adapting a previous CPG model based on abstract oscillators, we propose a model that reproduces the features of spinal cord recordings: the diversity of motor patterns, the correlation between phase lags and cycle frequencies, and the spontaneous switches between slow and fast rhythms. The five salamander behaviors were reproduced by connecting the CPG model to a mechanical simulation of the salamander with virtual muscles and local proprioceptive feedback. The main results were validated on a robot. A distributed controller was used to obtain the fast control loops necessary for implementing the virtual muscles. The distributed control is demonstrated in an experiment where the robot splits into multiple functional parts. The five salamander behaviors were emulated by regulating the CPG with two descending drives. Reproducing the kinematics of backward stepping and struggling however required stronger muscle contractions. The passive oscillations observed in the salamander's tail during forward underwater stepping could be reproduced using a third descending drive of zero to the tail oscillators. This reduced the drag on the body in our hydrodynamic simulation. We explored the effect of local proprioceptive feedback during swimming and forward terrestrial stepping. We found that feedback could replace or reduce the need for different drives in both cases. It also reduced the variability of intersegmental phase lags toward values appropriate for locomotion. Our work suggests that different motor behaviors do not require different CPG circuits: a single circuit can produce various behaviors when modulated by descending drive and sensory feedback

    From Biological to Synthetic Neurorobotics Approaches to Understanding the Structure Essential to Consciousness (Part 3)

    Get PDF
    This third paper locates the synthetic neurorobotics research reviewed in the second paper in terms of themes introduced in the first paper. It begins with biological non-reductionism as understood by Searle. It emphasizes the role of synthetic neurorobotics studies in accessing the dynamic structure essential to consciousness with a focus on system criticality and self, develops a distinction between simulated and formal consciousness based on this emphasis, reviews Tani and colleagues' work in light of this distinction, and ends by forecasting the increasing importance of synthetic neurorobotics studies for cognitive science and philosophy of mind going forward, finally in regards to most- and myth-consciousness

    Exploring Criticality as a Generic Adaptive Mechanism

    Get PDF
    The activity of many biological and cognitive systems is not poised deep within a specific regime of activity. Instead, they operate near points of critical behavior located at the boundary between different phases. Certain authors link some of the properties of criticality with the ability of living systems to generate autonomous or intrinsically generated behavior. However, these claims remain highly speculative. In this paper, we intend to explore the connection between criticality and autonomous behavior through conceptual models that show how embodied agents may adapt themselves toward critical points. We propose to exploit maximum entropy models and their formal descriptions of indicators of criticality to present a learning model that drives generic agents toward critical points. Specifically, we derive such a learning model in an embodied Boltzmann machine by implementing a gradient ascent rule that maximizes the heat capacity of the controller in order to make the network maximally sensitive to external perturbations. We test and corroborate the model by implementing an embodied agent in the Mountain Car benchmark test, which is controlled by a Boltzmann machine that adjusts its weights according to the model. We find that the neural controller reaches an apparent point of criticality, which coincides with a transition point of the behavior of the agent between two regimes of behavior, maximizing the synergistic information between its sensors and the combination of hidden and motor neurons. Finally, we discuss the potential of our learning model to answer questions about the connection between criticality and the capabilities of living systems to autonomously generate intrinsic constraints on their behavior. We suggest that these "critical agents" are able to acquire flexible behavioral patterns that are useful for the development of successful strategies in different contexts.Research was supported in part by the Spanish National Programme for Fostering Excellence in Scientific and Technical Research project PSI2014-62092-EXP and by the project TIN2016-80347-R funded by the Spanish Ministry of Economy and Competitiveness. MA was supported by the UPV/EHU postdoctoral training program ESPDOC17/17

    Tactile-STAR: A Novel Tactile STimulator And Recorder System for Evaluating and Improving Tactile Perception

    Get PDF
    Many neurological diseases impair the motor and somatosensory systems. While several different technologies are used in clinical practice to assess and improve motor functions, somatosensation is evaluated subjectively with qualitative clinical scales. Treatment of somatosensory deficits has received limited attention. To bridge the gap between the assessment and training of motor vs. somatosensory abilities, we designed, developed, and tested a novel, low-cost, two-component (bimanual) mechatronic system targeting tactile somatosensation: the Tactile-STAR—a tactile stimulator and recorder. The stimulator is an actuated pantograph structure driven by two servomotors, with an end-effector covered by a rubber material that can apply two different types of skin stimulation: brush and stretch. The stimulator has a modular design, and can be used to test the tactile perception in different parts of the body such as the hand, arm, leg, big toe, etc. The recorder is a passive pantograph that can measure hand motion using two potentiometers. The recorder can serve multiple purposes: participants can move its handle to match the direction and amplitude of the tactile stimulator, or they can use it as a master manipulator to control the tactile stimulator as a slave. Our ultimate goal is to assess and affect tactile acuity and somatosensory deficits. To demonstrate the feasibility of our novel system, we tested the Tactile-STAR with 16 healthy individuals and with three stroke survivors using the skin-brush stimulation. We verified that the system enables the mapping of tactile perception on the hand in both populations. We also tested the extent to which 30 min of training in healthy individuals led to an improvement of tactile perception. The results provide a first demonstration of the ability of this new system to characterize tactile perception in healthy individuals, as well as a quantification of the magnitude and pattern of tactile impairment in a small cohort of stroke survivors. The finding that short-term training with Tactile-STARcan improve the acuity of tactile perception in healthy individuals suggests that Tactile-STAR may have utility as a therapeutic intervention for somatosensory deficits
    • …
    corecore