17,375 research outputs found

    Wireless-powered cooperative communications: protocol design, performance analysis and resource allocation

    Get PDF
    Radio frequency (RF) energy transfer technique has attracted much attention and has recently been regarded as a key enabling technique for wireless-powered communications. However, the high attenuation of RF energy transfer over distance has greatly limited the performance and applications of WPCNs in practical scenarios. To overcome this essential hurdle, in this thesis we propose to combat the propagation attenuation by incorporating cooperative communication techniques in WPCNs. This opens a new paradigm named wireless-powered cooperative communication and raises many new research opportunities with promising applications. In this thesis, we focus on the novel protocol design, performance analysis and resource allocation of wireless-powered cooperative communication networks (WPCCNs). We first propose a harvest-then-cooperate (HTC) protocol for WPCCNs, where the wireless-powered source and relay(s) harvest energy from the AP in the downlink (DL) and work cooperatively in the uplink (UL) for transmitting source information. The average throughput performance of the HTC protocol with two single relay selection schemes is analyzed. We then design two novel protocols and study the optimal resource allocation for another setup of WPCCNs with a hybrid relay that has a constant power supply. Besides cooperating with the source for UL information transmission, the hybrid relay also transmits RF energy concurrently with the AP during the DL energy transfer phase. Subsequently, we adopt the Stackelberg game to model the strategic interactions in power beacon (PB)-assisted WPCCNs, where PBs are deployed to provide wireless charging services to wireless-powered users via RF energy transfer and are installed by different operators with the AP. Finally, we develop a distributed power splitting framework using non-cooperative game theory for a large-scale WPCCN, where multiple source-destination pairs communicate through their dedicated wireless-powered relays

    Wireless Powered Communication Networks

    Get PDF
    The limited life time of batteries is a crucial issue in energy-constrained wireless communications. Recently, the radio frequency (RF) wireless energy transfer (WET) technique has been developed as a new practical method to extend the life time of wireless communication networks. Inspired by this, wireless-powered communication network (WPCN) has attracted much attention. Therefore, in this thesis, we consider practical WET and wireless-powered information transmission in WPCNs. First we investigate a WPCN with two nodes, in which an access point (AP) exchanges information with a wireless-powered user. The user is assumed to have no embedded energy supply and needs to harvest energy from RF signals broadcast by the AP. Differing from existing work that focuses on the design of wireless-powered communication with one-way information flow, we deal with a more general scenario where both the AP and the user have information to transmit. Considering that the AP and user can work in either half-duplex or full-duplex mode as well as having two practical receiver architectures at the user side, we propose five elementary communication protocols for the considered system. Moreover, we define the concept of a throughput region to characterize the tradeoff between the uplink and downlink throughput in all proposed protocols. Numerical simulations are finally performed to compare the throughput regions of the proposed five elementary protocols. To further the study on WPCN, we investigate a wireless-powered two-way relay system, in which two wireless-powered sources exchange information through a multi-antenna relay. Both sources are assumed to have no embedded energy supply and thus first need to harvest energy from the radio frequency signals broadcast by the relay before exchanging their information via the relay. We aim to maximize the sum throughput of both sources by jointly optimizing the time switching duration, the energy beamforming vector and the precoding matrix at the relay. The formulated problem is non-convex and hard to solve in its original form. Motivated by this, we simplify the problem by reducing the number of variables and by decomposing the precoding matrix into a transmit vector and a receive vector. We then propose a bisection search, a 1-D search and an iterative algorithm to optimize each variable. Numerical results show that our proposed scheme can achieve higher throughput than the conventional scheme without optimization on the beamforming vector and precoding matrix at the relay. Due to the high attenuation of RF energy over a long distance, RF based wireless-powered communication is usually designed for low-power scenarios, e.g., wireless-powered sensor networks. Recently, magnetic induction (MI) based WET has been proposed to wirelessly transfer a large amount of energy. Inspired by this, we investigate MI based WET in WPCN. Specifically, we study a MI based wireless-powered relaying network, in which a MI source transmits information to a MI destination, with the help of a MI based wireless powered relay. We propose four active relaying schemes, which consider different relaying modes and different energy harvesting receiver architectures at the relay. We then aim to maximize the end-to-end throughput of each scheme by using a bisection search, a water-filling algorithm, a Lagrange multiplier, quasi-convex programming and an iterative algorithm. We compare the proposed active relaying schemes with passive relaying. Numerical results show that the proposed relaying schemes with a decode-and-forward relaying mode significantly improve the throughput over passive relaying

    Stochastic Geometry Analysis and Design of Wireless Powered MTC Networks

    Get PDF
    Machine-type-communications (MTC) are being crucial in the development of next generation mobile networks. Given that MTC devices are usually battery constrained, wireless power transfer (WPT) and energy harvesting (EH) have emerged as feasible options to enlarge the lifetime of the devices, leading to wireless powered networks. In that sense, we consider a setup where groups of sensors are served by a base station (BS), which is responsible for the WPT. Additionally, EH is used to collect energy from the wireless signals transmitted by other sensors. To characterize the energy obtained from both procedures, we model the sporadic activity of sensors as Bernoulli random variables and their positions with repulsive Mat\'ern cluster processes. This way, the random activity and spatial distribution of sensors are introduced in the analysis of the energy statistics. This analysis can be useful for system design aspects such as energy allocation schemes or optimization of idle-active periods, among others. As an example of use of the developed analysis, we include the design of a WPT scheme under a proportional fair policy.Comment: This work has been accepted at the 2020 21st IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2020). Copyright held by IEE
    • …
    corecore