795 research outputs found

    Robustness: a new SLIP model based criterion for gait transitions in bipedal locomotion

    Get PDF
    Bipedal locomotion is a phenomenon that still eludes a fundamental and concise mathematical understanding. Conceptual models that capture some relevant aspects of the process exist but their full explanatory power is not yet exhausted. In the current study, we introduce the robustness criterion which defines the conditions for stable locomotion when steps are taken with imprecise angle of attack. Intuitively, the necessity of a higher precision indicates the difficulty to continue moving with a given gait. We show that the spring-loaded inverted pendulum model, under the robustness criterion, is consistent with previously reported findings on attentional demand during human locomotion. This criterion allows transitions between running and walking, many of which conserve forward speed. Simulations of transitions predict Froude numbers below the ones observed in humans, nevertheless the model satisfactorily reproduces several biomechanical indicators such as hip excursion, gait duty factor and vertical ground reaction force profiles. Furthermore, we identify reversible robust walk-run transitions, which allow the system to execute a robust version of the hopping gait. These findings foster the spring-loaded inverted pendulum model as the unifying framework for the understanding of bipedal locomotion.Comment: unpublished, in preparatio

    In silico case studies of compliant robots: AMARSI deliverable 3.3

    Get PDF
    In the deliverable 3.2 we presented how the morphological computing ap- proach can significantly facilitate the control strategy in several scenarios, e.g. quadruped locomotion, bipedal locomotion and reaching. In particular, the Kitty experimental platform is an example of the use of morphological computation to allow quadruped locomotion. In this deliverable we continue with the simulation studies on the application of the different morphological computation strategies to control a robotic system

    Beyond Basins of Attraction: Quantifying Robustness of Natural Dynamics

    Full text link
    Properly designing a system to exhibit favorable natural dynamics can greatly simplify designing or learning the control policy. However, it is still unclear what constitutes favorable natural dynamics and how to quantify its effect. Most studies of simple walking and running models have focused on the basins of attraction of passive limit-cycles and the notion of self-stability. We instead emphasize the importance of stepping beyond basins of attraction. We show an approach based on viability theory to quantify robust sets in state-action space. These sets are valid for the family of all robust control policies, which allows us to quantify the robustness inherent to the natural dynamics before designing the control policy or specifying a control objective. We illustrate our formulation using spring-mass models, simple low dimensional models of running systems. We then show an example application by optimizing robustness of a simulated planar monoped, using a gradient-free optimization scheme. Both case studies result in a nonlinear effective stiffness providing more robustness.Comment: 15 pages. This work has been accepted to IEEE Transactions on Robotics (2019

    Bio-inspired swing leg control for spring-mass robots running on ground with unexpected height disturbance

    Get PDF
    We proposed three swing leg control policies for spring-mass running robots, inspired by experimental data from our recent collaborative work on ground running birds. Previous investigations suggest that animals may prioritize injury avoidance and/or efficiency as their objective function during running rather than maintaining limit-cycle stability. Therefore, in this study we targeted structural capacity (maximum leg force to avoid damage) and efficiency as the main goals for our control policies, since these objective functions are crucial to reduce motor size and structure weight. Each proposed policy controls the leg angle as a function of time during flight phase such that its objective function during the subsequent stance phase is regulated. The three objective functions that are regulated in the control policies are (i) the leg peak force, (ii) the axial impulse, and (iii) the leg actuator work. It should be noted that each control policy regulates one single objective function. Surprisingly, all three swing leg control policies result in nearly identical subsequent stance phase dynamics. This implies that the implementation of any of the proposed control policies would satisfy both goals (damage avoidance and efficiency) at once. Furthermore, all three control policies require a surprisingly simple leg angle adjustment: leg retraction with constant angular acceleration

    Exploring Passive Dynamics in Legged Locomotion

    Full text link
    A common observation among legged animals is that they move their limbs differently as they change their speed. The observed distinct patterns of limb movement are usually referred to as different gaits. Experiments with humans and mammals have shown that switching between different gaits as locomotion speed changes, enables energetically more economical locomotion. However, it still remains unclear why animals with very different morphologies use similar gaits, where these gaits come from, and how they are related. This dissertation approaches these questions by exploring the natural passive dynamic motions of a range of simplified mechanical models of legged locomotion. Recent research has shown that a simple bipedal model with compliant legs and a single set of parameters can match ground reaction forces of both human walking and running. As first contribution of this dissertation, this concept is extended to quadrupeds. A unified model is developed to reproduce many quadrupedal gaits by only varying the initial states of a motion. In addition, the model parameters are optimized to match the experimental data of real horses, as measured by an instrumented treadmill. It is shown that the proposed model is able to not only create similar kinematic motion trajectories, but can also explain the ground reaction forces of real horses moving with different gaits. In order to reveal the mechanical contribution to gaits, the simplistic bipedal and quadrupedal models are then augmented to have passive swing leg motions by including torsional springs at the hip joints. Through a numerical continuation of periodic motions, this work shows that a wide range of gaits emerges from a simple bouncing-in-place motion starting with different footfall patterns. For both, bipedal and quadrupedal models, these gaits arise along one-dimensional manifolds of solutions with varying total energy. Through breaking temporal and spatial symmetries of the periodic motions, these manifolds bifurcate into distinct branches with various footfall sequences. That is, passive gaits are obtained as different oscillatory motions of a single mechanical system with a single set of parameters. By reproducing a variety of gaits as a manifestation of the passive dynamics of unified models, this work provides insights into the underlying dynamics of legged locomotion and may help design of more economical controllers for legged machines.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147585/1/ganzheny_1.pd

    The Penn Jerboa: A Platform for Exploring Parallel Composition of Templates

    Get PDF
    We have built a 12DOF, passive-compliant legged, tailed biped actuated by four brushless DC motors. We anticipate that this machine will achieve varied modes of quasistatic and dynamic balance, enabling a broad range of locomotion tasks including sitting, standing, walking, hopping, running, turning, leaping, and more. Achieving this diversity of behavior with a single under-actuated body, requires a correspondingly diverse array of controllers, motivating our interest in compositional techniques that promote mixing and reuse of a relatively few base constituents to achieve a combinatorially growing array of available choices. Here we report on the development of one important example of such a behavioral programming method, the construction of a novel monopedal sagittal plane hopping gait through parallel composition of four decoupled 1DOF base controllers. For this example behavior, the legs are locked in phase and the body is fastened to a boom to restrict motion to the sagittal plane. The platform's locomotion is powered by the hip motor that adjusts leg touchdown angle in flight and balance in stance, along with a tail motor that adjusts body shape in flight and drives energy into the passive leg shank spring during stance. The motor control signals arise from the application in parallel of four simple, completely decoupled 1DOF feedback laws that provably stabilize in isolation four corresponding 1DOF abstract reference plants. Each of these abstract 1DOF closed loop dynamics represents some simple but crucial specific component of the locomotion task at hand. We present a partial proof of correctness for this parallel composition of template reference systems along with data from the physical platform suggesting these templates are anchored as evidenced by the correspondence of their characteristic motions with a suitably transformed image of traces from the physical platform.Comment: Technical Report to Accompany: A. De and D. Koditschek, "Parallel composition of templates for tail-energized planar hopping," in 2015 IEEE International Conference on Robotics and Automation (ICRA), May 2015. v2: Used plain latex article, correct gap radius and specific force/torque number

    Collision-based energetic comparison of rolling and hopping over obstacles.

    Get PDF
    Locomotion of machines and robots operating in rough terrain is strongly influenced by the mechanics of the ground-machine interactions. A rolling wheel in terrain with obstacles is subject to collisional energy losses, which is governed by mechanics comparable to hopping or walking locomotion. Here we investigate the energetic cost associated with overcoming an obstacle for rolling and hopping locomotion, using a simple mechanics model. The model considers collision-based interactions with the ground and the obstacle, without frictional losses, and we quantify, analyse, and compare the sources of energetic costs for three locomotion strategies. Our results show that the energetic advantages of the locomotion strategies are uniquely defined given the moment of inertia and the Froude number associated with the system. We find that hopping outperforms rolling at larger Froude numbers and vice versa. The analysis is further extended for a comparative study with animals. By applying size and inertial properties through an allometric scaling law of hopping and trotting animals to our models, we found that the conditions at which hopping becomes energetically advantageous to rolling roughly corresponds to animals' preferred gait transition speeds. The energetic collision losses as predicted by the model are largely verified experimentally
    • …
    corecore