1,629 research outputs found

    From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz

    Full text link
    The next few years will be exciting as prototype universal quantum processors emerge, enabling implementation of a wider variety of algorithms. Of particular interest are quantum heuristics, which require experimentation on quantum hardware for their evaluation, and which have the potential to significantly expand the breadth of quantum computing applications. A leading candidate is Farhi et al.'s Quantum Approximate Optimization Algorithm, which alternates between applying a cost-function-based Hamiltonian and a mixing Hamiltonian. Here, we extend this framework to allow alternation between more general families of operators. The essence of this extension, the Quantum Alternating Operator Ansatz, is the consideration of general parametrized families of unitaries rather than only those corresponding to the time-evolution under a fixed local Hamiltonian for a time specified by the parameter. This ansatz supports the representation of a larger, and potentially more useful, set of states than the original formulation, with potential long-term impact on a broad array of application areas. For cases that call for mixing only within a desired subspace, refocusing on unitaries rather than Hamiltonians enables more efficiently implementable mixers than was possible in the original framework. Such mixers are particularly useful for optimization problems with hard constraints that must always be satisfied, defining a feasible subspace, and soft constraints whose violation we wish to minimize. More efficient implementation enables earlier experimental exploration of an alternating operator approach to a wide variety of approximate optimization, exact optimization, and sampling problems. Here, we introduce the Quantum Alternating Operator Ansatz, lay out design criteria for mixing operators, detail mappings for eight problems, and provide brief descriptions of mappings for diverse problems.Comment: 51 pages, 2 figures. Revised to match journal pape

    Quantum Alternating Operator Ansatz (QAOA) beyond low depth with gradually changing unitaries

    Full text link
    The Quantum Approximate Optimization Algorithm and its generalization to Quantum Alternating Operator Ansatz (QAOA) is a promising approach for applying quantum computers to challenging problems such as combinatorial optimization and computational chemistry. In this paper, we study the underlying mechanisms governing the behavior of QAOA circuits beyond shallow depth in the practically relevant setting of gradually varying unitaries. We use the discrete adiabatic theorem, which complements and generalizes the insights obtained from the continuous-time adiabatic theorem primarily considered in prior work. Our analysis explains some general properties that are conspicuously depicted in the recently introduced QAOA performance diagrams. For parameter sequences derived from continuous schedules (e.g. linear ramps), these diagrams capture the algorithm's performance over different parameter sizes and circuit depths. Surprisingly, they have been observed to be qualitatively similar across different performance metrics and application domains. Our analysis explains this behavior as well as entails some unexpected results, such as connections between the eigenstates of the cost and mixer QAOA Hamiltonians changing based on parameter size and the possibility of reducing circuit depth without sacrificing performance

    Tensor Product Approximation (DMRG) and Coupled Cluster method in Quantum Chemistry

    Full text link
    We present the Copupled Cluster (CC) method and the Density matrix Renormalization Grooup (DMRG) method in a unified way, from the perspective of recent developments in tensor product approximation. We present an introduction into recently developed hierarchical tensor representations, in particular tensor trains which are matrix product states in physics language. The discrete equations of full CI approximation applied to the electronic Schr\"odinger equation is casted into a tensorial framework in form of the second quantization. A further approximation is performed afterwards by tensor approximation within a hierarchical format or equivalently a tree tensor network. We establish the (differential) geometry of low rank hierarchical tensors and apply the Driac Frenkel principle to reduce the original high-dimensional problem to low dimensions. The DMRG algorithm is established as an optimization method in this format with alternating directional search. We briefly introduce the CC method and refer to our theoretical results. We compare this approach in the present discrete formulation with the CC method and its underlying exponential parametrization.Comment: 15 pages, 3 figure

    A Feasibility-Preserved Quantum Approximate Solver for the Capacitated Vehicle Routing Problem

    Full text link
    The Capacitated Vehicle Routing Problem (CVRP) is an NP-optimization problem (NPO) that arises in various fields including transportation and logistics. The CVRP extends from the Vehicle Routing Problem (VRP), aiming to determine the most efficient plan for a fleet of vehicles to deliver goods to a set of customers, subject to the limited carrying capacity of each vehicle. As the number of possible solutions skyrockets when the number of customers increases, finding the optimal solution remains a significant challenge. Recently, a quantum-classical hybrid algorithm known as Quantum Approximate Optimization Algorithm (QAOA) can provide better solutions in some cases of combinatorial optimization problems, compared to classical heuristics. However, the QAOA exhibits a diminished ability to produce high-quality solutions for some constrained optimization problems including the CVRP. One potential approach for improvement involves a variation of the QAOA known as the Grover-Mixer Quantum Alternating Operator Ansatz (GM-QAOA). In this work, we attempt to use GM-QAOA to solve the CVRP. We present a new binary encoding for the CVRP, with an alternative objective function of minimizing the shortest path that bypasses the vehicle capacity constraint of the CVRP. The search space is further restricted by the Grover-Mixer. We examine and discuss the effectiveness of the proposed solver through its application to several illustrative examples.Comment: 9 pages, 8 figures, 1 tabl
    • …
    corecore