2,228 research outputs found

    Electromagnetics from a quasistatic perspective

    Get PDF
    Quasistatics is introduced so that it fits smoothly into the standard textbook presentation of electrodynamics. The usual path from statics to general electrodynamics is rather short and surprisingly simple. A closer look reveals however that it is not without confusing issues as has been illustrated by many contributions to this Journal. Quasistatic theory is conceptually useful by providing an intermediate level in between statics and the full set of Maxwell's equations. Quasistatics is easier than general electrodynamics and in some ways more similar to statics. It is however, in terms of interesting physics and important applications, far richer than statics. Quasistatics is much used in electromagnetic modeling, an activity that today is possible on a PC and which also has great pedagogical potential. The use of electromagnetic simulations in teaching gives additional support for the importance of quasistatics. This activity may also motivate some change of focus in the presentation of basic electrodynamics

    On Essential Incompleteness of Hertz's Experiments on Propagation of Electromagnetic Interactions

    Get PDF
    The historical background of the 19th century electromagnetic theory is revisited from the standpoint of the opposition between alternative approaches in respect to the problem of interactions. The 19th century electrodynamics became the battle-field of a paramount importance to test existing conceptions of interactions. Hertz's experiments were designed to bring a solid experimental evidence in favor of one of them. The modern scientific method applied to analyze Hertz's experimental approach as well as the analysis of his laboratory notes, dairy and private letters show that Hertz's "\textit{crucial}" experiments cannot be considered as conclusive at many points as it is generally implied. We found that alternative Helmholtz's electrodynamics did not contradict any of Hertz's experimental observations of transverse components as Maxwell's theory predicted. Moreover, as we now know from recently published Hertz's dairy and private notes, his first experimental results indicated clearly on infinite rate of propagation. Nevertheless, Hertz's experiments provided no further explicit information on non-local longitudinal components which were such an essential feature of Helmholtz's theory. Necessary and sufficient conditions for a decisive choice on the adequate account of electromagnetic interactions are discussed from the position of modern scientific method

    Convection displacement current and alternative form of Maxwell-Lorentz equations

    Get PDF
    Some mathematical inconsistencies in the conventional form of Maxwell's equations extended by Lorentz for a single charge system are discussed. To surmount these in framework of Maxwellian theory, a novel convection displacement current is considered as additional and complementary to the famous Maxwell displacement current. It is shown that this form of the Maxwell-Lorentz equations is similar to that proposed by Hertz for electrodynamics of bodies in motion. Original Maxwell's equations can be considered as a valid approximation for a continuous and closed (or going to infinity) conduction current. It is also proved that our novel form of the Maxwell-Lorentz equations is relativistically invariant. In particular, a relativistically invariant gauge for quasistatic fields has been found to replace the non-invariant Coulomb gauge. The new gauge condition contains the famous relationship between electric and magnetic potentials for one uniformly moving charge that is usually attributed to the Lorentz transformations. Thus, for the first time, using the convection displacement current, a physical interpretation is given to the relationship between the components of the four-vector of quasistatic potentials. A rigorous application of the new gauge transformation with the Lorentz gauge transforms the basic field equations into an independent pair of differential equations responsible for longitudinal and transverse fields, respectively. The longitudinal components can be interpreted exclusively from the standpoint of the instantaneous "action at a distance" concept and leads to necessary conceptual revision of the conventional Faraday-Maxwell field. The concept of electrodynamic dualism is proposed for self-consistent classical electrodynamics. It implies simultaneous coexistenceComment: ReVTeX file, 29pp., no figure

    Electrodynamics of a Cosmic Dark Fluid

    Get PDF
    Cosmic Dark Fluid is considered as a non-stationary medium, in which electromagnetic waves propagate, and magneto-electric field structures emerge and evolve. A medium - type representation of the Dark Fluid allows us to involve into analysis the concepts and mathematical formalism elaborated in the framework of classical covariant electrodynamics of continua, and to distinguish dark analogs of well-known medium-effects, such as optical activity, pyro-electricity, piezo-magnetism, electro- and magneto-striction and dynamo-optical activity. The Dark Fluid is assumed to be formed by a duet of a Dark Matter (a pseudoscalar axionic constituent) and Dark Energy (a scalar element); respectively, we distinguish electrodynamic effects induced by these two constituents of the Dark Fluid. The review contains discussions of ten models, which describe electrodynamic effects induced by Dark Matter and/or Dark Energy. The models are accompanied by examples of exact solutions to the master equations, correspondingly extended; applications are considered for cosmology and space-times with spherical and pp-wave symmetries. In these applications we focused the attention on three main electromagnetic phenomena induced by the Dark Fluid: first, emergence of Longitudinal Magneto-Electric Clusters; second, generation of anomalous electromagnetic responses; third, formation of Dark Epochs in the Universe history.Comment: 39 pages, 0 figures, replaced by the version published in MDPI Journal "Symmetry" (Special Issue: Symmetry: Feature Papers 2016); typos correcte

    Vito Volterra and his commemoration for the centenary of Faraday's discovery of electromagnetic induction

    Get PDF
    The paper presents a memoir of 1931 written by Vito Volterra on the Italian physicists of the nineteenth century and the researches these scientists made after the discoveries of Michael Faraday on electromagnetism. Here, the memoir entitled "I fisici italiani e le ricerche di Faraday" is translated from Italian. It was written to commemorate the centenary of Faraday's discovery of the electromagnetic induction. Besides being a remarkable article on the history of science, it was also, in a certain extent, a political paper. In fact, in 1931, the same year of the publication of this article, Mussolini imposed a mandatory oath of loyalty to Italian academies. Volterra was one of the very few professors who refused to take this oath of loyalty. Because of the political situation in Italy, Volterra wanted to end his paper sending a message to the scientists of the world, telling that the feeling of admiration and gratitude that in Italy the scientists had towards "the great thinker and British experimentalist" was profound and unanimous.Comment: Volterra's original paper at http://www.liberliber.it/online/autori/autori-v/vito-volterra/i-fisici-italiani-e-le-ricerche-di-Faraday
    • …
    corecore