2,059 research outputs found

    Service in Your Neighborhood: Fairness in Center Location

    Get PDF
    When selecting locations for a set of centers, standard clustering algorithms may place unfair burden on some individuals and neighborhoods. We formulate a fairness concept that takes local population densities into account. In particular, given k centers to locate and a population of size n, we define the "neighborhood radius" of an individual i as the minimum radius of a ball centered at i that contains at least n/k individuals. Our objective is to ensure that each individual has a center that is within at most a small constant factor of her neighborhood radius. We present several theoretical results: We show that optimizing this factor is NP-hard; we give an approximation algorithm that guarantees a factor of at most 2 in all metric spaces; and we prove matching lower bounds in some metric spaces. We apply a variant of this algorithm to real-world address data, showing that it is quite different from standard clustering algorithms and outperforms them on our objective function and balances the load between centers more evenly

    Steiner Distance in Product Networks

    Full text link
    For a connected graph GG of order at least 22 and SβŠ†V(G)S\subseteq V(G), the \emph{Steiner distance} dG(S)d_G(S) among the vertices of SS is the minimum size among all connected subgraphs whose vertex sets contain SS. Let nn and kk be two integers with 2≀k≀n2\leq k\leq n. Then the \emph{Steiner kk-eccentricity ek(v)e_k(v)} of a vertex vv of GG is defined by ek(v)=max⁑{dG(S)β€‰βˆ£β€‰SβŠ†V(G), ∣S∣=k,Β andΒ v∈S}e_k(v)=\max \{d_G(S)\,|\,S\subseteq V(G), \ |S|=k, \ and \ v\in S\}. Furthermore, the \emph{Steiner kk-diameter} of GG is sdiamk(G)=max⁑{ek(v)β€‰βˆ£β€‰v∈V(G)}sdiam_k(G)=\max \{e_k(v)\,|\, v\in V(G)\}. In this paper, we investigate the Steiner distance and Steiner kk-diameter of Cartesian and lexicographical product graphs. Also, we study the Steiner kk-diameter of some networks.Comment: 29 pages, 4 figure

    Center-based Clustering under Perturbation Stability

    Full text link
    Clustering under most popular objective functions is NP-hard, even to approximate well, and so unlikely to be efficiently solvable in the worst case. Recently, Bilu and Linial \cite{Bilu09} suggested an approach aimed at bypassing this computational barrier by using properties of instances one might hope to hold in practice. In particular, they argue that instances in practice should be stable to small perturbations in the metric space and give an efficient algorithm for clustering instances of the Max-Cut problem that are stable to perturbations of size O(n1/2)O(n^{1/2}). In addition, they conjecture that instances stable to as little as O(1) perturbations should be solvable in polynomial time. In this paper we prove that this conjecture is true for any center-based clustering objective (such as kk-median, kk-means, and kk-center). Specifically, we show we can efficiently find the optimal clustering assuming only stability to factor-3 perturbations of the underlying metric in spaces without Steiner points, and stability to factor 2+32+\sqrt{3} perturbations for general metrics. In particular, we show for such instances that the popular Single-Linkage algorithm combined with dynamic programming will find the optimal clustering. We also present NP-hardness results under a weaker but related condition
    • …
    corecore