1,117 research outputs found

    From random walks to distances on unweighted graphs

    Full text link
    Large unweighted directed graphs are commonly used to capture relations between entities. A fundamental problem in the analysis of such networks is to properly define the similarity or dissimilarity between any two vertices. Despite the significance of this problem, statistical characterization of the proposed metrics has been limited. We introduce and develop a class of techniques for analyzing random walks on graphs using stochastic calculus. Using these techniques we generalize results on the degeneracy of hitting times and analyze a metric based on the Laplace transformed hitting time (LTHT). The metric serves as a natural, provably well-behaved alternative to the expected hitting time. We establish a general correspondence between hitting times of the Brownian motion and analogous hitting times on the graph. We show that the LTHT is consistent with respect to the underlying metric of a geometric graph, preserves clustering tendency, and remains robust against random addition of non-geometric edges. Tests on simulated and real-world data show that the LTHT matches theoretical predictions and outperforms alternatives.Comment: To appear in NIPS 201

    On the limiting behavior of parameter-dependent network centrality measures

    Get PDF
    We consider a broad class of walk-based, parameterized node centrality measures for network analysis. These measures are expressed in terms of functions of the adjacency matrix and generalize various well-known centrality indices, including Katz and subgraph centrality. We show that the parameter can be "tuned" to interpolate between degree and eigenvector centrality, which appear as limiting cases. Our analysis helps explain certain correlations often observed between the rankings obtained using different centrality measures, and provides some guidance for the tuning of parameters. We also highlight the roles played by the spectral gap of the adjacency matrix and by the number of triangles in the network. Our analysis covers both undirected and directed networks, including weighted ones. A brief discussion of PageRank is also given.Comment: First 22 pages are the paper, pages 22-38 are the supplementary material

    Line Graphs of Weighted Networks for Overlapping Communities

    Get PDF
    In this paper, we develop the idea to partition the edges of a weighted graph in order to uncover overlapping communities of its nodes. Our approach is based on the construction of different types of weighted line graphs, i.e. graphs whose nodes are the links of the original graph, that encapsulate differently the relations between the edges. Weighted line graphs are argued to provide an alternative, valuable representation of the system's topology, and are shown to have important applications in community detection, as the usual node partition of a line graph naturally leads to an edge partition of the original graph. This identification allows us to use traditional partitioning methods in order to address the long-standing problem of the detection of overlapping communities. We apply it to the analysis of different social and geographical networks.Comment: 8 Pages. New title and text revisions to emphasise differences from earlier paper
    • …
    corecore