15,316 research outputs found

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    Business models in the Smart Grid: challenges, opportunities and proposals for prosumer profitability.

    Get PDF
    Considering that non-renewable energy resources are dwindling, the smart grid turns out to be one of the most promising and compelling systems for the future of energy. Not only does it combine efficient energy consumption with avant-garde technologies related to renewable energies, but it is also capable of providing several beneficial utilities, such as power monitoring and data provision. When smart grid end users turn into prosumers, they become arguably the most important value creators within the smart grid and a decisive agent of change in terms of electricity usage. There is a plethora of research and development areas related to the smart grid that can be exploited for new business opportunities, thus spawning another branch of the so-called ?green economy? focused on turning smart energy usage into a profitable business. This paper deals with emerging business models for smart grid prosumers, their strengths and weaknesses and puts forward new prosumer-oriented business models, along with their value propositions

    On Using Blockchains for Safety-Critical Systems

    Full text link
    Innovation in the world of today is mainly driven by software. Companies need to continuously rejuvenate their product portfolios with new features to stay ahead of their competitors. For example, recent trends explore the application of blockchains to domains other than finance. This paper analyzes the state-of-the-art for safety-critical systems as found in modern vehicles like self-driving cars, smart energy systems, and home automation focusing on specific challenges where key ideas behind blockchains might be applicable. Next, potential benefits unlocked by applying such ideas are presented and discussed for the respective usage scenario. Finally, a research agenda is outlined to summarize remaining challenges for successfully applying blockchains to safety-critical cyber-physical systems

    The link between the diversity of productive models and the variety of capitalisms

    Get PDF
    Prepared within the framework of the ESEMK project supported by the EU (FP6, Priority 7, CIT-CT-2004-506077 The European Socio-Economic Models of a Knowledge-based society), this paper discusses the linking between the variety of capitalism and the diversity of organisational forms for firms. This linking is illustrated through the case of the car industry. First part presents the works based on the hypothesis of an institutional isomorphism between the macro-level and the organisation. Second part tries to link analytical grids which integrate the diversity of institutional forms at the macro, meso and micro-levels.car industry, institution, institutional isomorphism, organisation of the firm, productive models, sector, variety of capitalism

    Urban futures in the era of the E-Economy

    Get PDF

    A novel complex system approach for the determination of renewable energy sources impact on electricity infrastructures

    Get PDF
    The increasing environmental awareness, associated with the increasing demand and price of fossil fuels, is leading to the implementation of novel energy models based on renewable energy sources (RES) and sustainable mobility. However, the actual physical and economic models on which power system management rules are based on, are not able to properly manage the high amount of unwanted power fluctuations introduced by RES power generation. For such reason, major issues has been pointed out in term of energy security and access, inspiring changes in methods and paradigms associated to energy supply management. Moreover, the transaction towards an emission free mobility must be based on the interaction between RES generation and Electric Vehicles (EV) mobility, pointing out the need of a new approach able to combine mobility and energy supply infrastructures. In order to describe and model power systems with an high amount of RES generation, is important to indicate that such systems are made by a great number of microscopical interacting elements which behave in a stochastic way. For this reason, these systems can not easily be described in a deterministic way, but must be described by a statistical representation of the system observables. In this thesis, a novel approach based on statistical mechanics methods is presented, able to model the impact of such sources over the system. By using such approach, has been possible to evaluate the possible impact of such sources in terms of power system stability and sustainable mobility
    • …
    corecore