507,845 research outputs found

    Counting single-qubit Clifford equivalent graph states is #P-Complete

    Full text link
    Graph states, which include for example Bell states, GHZ states and cluster states, form a well-known class of quantum states with applications ranging from quantum networks to error-correction. Deciding whether two graph states are equivalent up to single-qubit Clifford operations is known to be decidable in polynomial time and have been studied both in the context of producing certain required states in a quantum network but also in relation to stabilizer codes. The reason for the latter this is that single-qubit Clifford equivalent graph states exactly corresponds to equivalent stabilizer codes. We here consider the computational complexity of, given a graph state |G>, counting the number of graph states, single-qubit Clifford equivalent to |G>. We show that this problem is #P-Complete. To prove our main result we make use of the notion of isotropic systems in graph theory. We review the definition of isotropic systems and point out their strong relation to graph states. We believe that these isotropic systems can be useful beyond the results presented in this paper.Comment: 10 pages, no figure

    Fisher Metric, Geometric Entanglement and Spin Networks

    Get PDF
    Starting from recent results on the geometric formulation of quantum mechanics, we propose a new information geometric characterization of entanglement for spin network states in the context of quantum gravity. For the simple case of a single-link fixed graph (Wilson line), we detail the construction of a Riemannian Fisher metric tensor and a symplectic structure on the graph Hilbert space, showing how these encode the whole information about separability and entanglement. In particular, the Fisher metric defines an entanglement monotone which provides a notion of distance among states in the Hilbert space. In the maximally entangled gauge-invariant case, the entanglement monotone is proportional to a power of the area of the surface dual to the link thus supporting a connection between entanglement and the (simplicial) geometric properties of spin network states. We further extend such analysis to the study of non-local correlations between two non-adjacent regions of a generic spin network graph characterized by the bipartite unfolding of an Intertwiner state. Our analysis confirms the interpretation of spin network bonds as a result of entanglement and to regard the same spin network graph as an information graph, whose connectivity encodes, both at the local and non-local level, the quantum correlations among its parts. This gives a further connection between entanglement and geometry.Comment: 29 pages, 3 figures, revised version accepted for publicatio

    Generating and verifying graph states for fault-tolerant topological measurement-based quantum computing in 2D optical lattices

    Full text link
    We propose two schemes for implementing graph states useful for fault-tolerant topological measurement-based quantum computation in 2D optical lattices. We show that bilayer cluster and surface code states can be created by global single-row and controlled-Z operations. The schemes benefit from the accessibility of atom addressing on 2D optical lattices and the existence of an efficient verification protocol which allows us to ensure the experimental feasibility of measuring the fidelity of the system against the ideal graph state. The simulation results show potential for a physical realization toward fault-tolerant measurement-based quantum computation against dephasing and unitary phase errors in optical lattices.Comment: 6 pages and 4 figures (minor changed
    • …
    corecore