5,985 research outputs found

    Interchange of electronic design through VHDL and EIS

    Get PDF
    The need for both robust and unambiguous electronic designs is a direct requirement of the astonishing growth in design and manufacturing capability during recent years. In order to manage the plethora of designs, and have the design data both interchangeable and interoperable, the Very High Speed Integrated Circuits (VHSIC) program is developing two major standards for the electronic design community. The VHSIC Hardware Description Language (VHDL) is designed to be the lingua franca for transmission of design data between designers and their environments. The Engineering Information System (EIS) is designed to ease the integration of data betweeen diverse design automation systems. This paper describes the rationale for the necessity for these two standards and how they provide a synergistic expressive capability across the macrocosm of design environments

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    Beyond Good and Evil: Formalizing the Security Guarantees of Compartmentalizing Compilation

    Full text link
    Compartmentalization is good security-engineering practice. By breaking a large software system into mutually distrustful components that run with minimal privileges, restricting their interactions to conform to well-defined interfaces, we can limit the damage caused by low-level attacks such as control-flow hijacking. When used to defend against such attacks, compartmentalization is often implemented cooperatively by a compiler and a low-level compartmentalization mechanism. However, the formal guarantees provided by such compartmentalizing compilation have seen surprisingly little investigation. We propose a new security property, secure compartmentalizing compilation (SCC), that formally characterizes the guarantees provided by compartmentalizing compilation and clarifies its attacker model. We reconstruct our property by starting from the well-established notion of fully abstract compilation, then identifying and lifting three important limitations that make standard full abstraction unsuitable for compartmentalization. The connection to full abstraction allows us to prove SCC by adapting established proof techniques; we illustrate this with a compiler from a simple unsafe imperative language with procedures to a compartmentalized abstract machine.Comment: Nit

    Automated Debugging Methodology for FPGA-based Systems

    Get PDF
    Electronic devices make up a vital part of our lives. These are seen from mobiles, laptops, computers, home automation, etc. to name a few. The modern designs constitute billions of transistors. However, with this evolution, ensuring that the devices fulfill the designer’s expectation under variable conditions has also become a great challenge. This requires a lot of design time and effort. Whenever an error is encountered, the process is re-started. Hence, it is desired to minimize the number of spins required to achieve an error-free product, as each spin results in loss of time and effort. Software-based simulation systems present the main technique to ensure the verification of the design before fabrication. However, few design errors (bugs) are likely to escape the simulation process. Such bugs subsequently appear during the post-silicon phase. Finding such bugs is time-consuming due to inherent invisibility of the hardware. Instead of software simulation of the design in the pre-silicon phase, post-silicon techniques permit the designers to verify the functionality through the physical implementations of the design. The main benefit of the methodology is that the implemented design in the post-silicon phase runs many order-of-magnitude faster than its counterpart in pre-silicon. This allows the designers to validate their design more exhaustively. This thesis presents five main contributions to enable a fast and automated debugging solution for reconfigurable hardware. During the research work, we used an obstacle avoidance system for robotic vehicles as a use case to illustrate how to apply the proposed debugging solution in practical environments. The first contribution presents a debugging system capable of providing a lossless trace of debugging data which permits a cycle-accurate replay. This methodology ensures capturing permanent as well as intermittent errors in the implemented design. The contribution also describes a solution to enhance hardware observability. It is proposed to utilize processor-configurable concentration networks, employ debug data compression to transmit the data more efficiently, and partially reconfiguring the debugging system at run-time to save the time required for design re-compilation as well as preserve the timing closure. The second contribution presents a solution for communication-centric designs. Furthermore, solutions for designs with multi-clock domains are also discussed. The third contribution presents a priority-based signal selection methodology to identify the signals which can be more helpful during the debugging process. A connectivity generation tool is also presented which can map the identified signals to the debugging system. The fourth contribution presents an automated error detection solution which can help in capturing the permanent as well as intermittent errors without continuous monitoring of debugging data. The proposed solution works for designs even in the absence of golden reference. The fifth contribution proposes to use artificial intelligence for post-silicon debugging. We presented a novel idea of using a recurrent neural network for debugging when a golden reference is present for training the network. Furthermore, the idea was also extended to designs where golden reference is not present
    • …
    corecore