220 research outputs found

    Topos Semantics for Higher-Order Modal Logic

    Full text link
    We define the notion of a model of higher-order modal logic in an arbitrary elementary topos E\mathcal{E}. In contrast to the well-known interpretation of (non-modal) higher-order logic, the type of propositions is not interpreted by the subobject classifier ΩE\Omega_{\mathcal{E}}, but rather by a suitable complete Heyting algebra HH. The canonical map relating HH and ΩE\Omega_{\mathcal{E}} both serves to interpret equality and provides a modal operator on HH in the form of a comonad. Examples of such structures arise from surjective geometric morphisms f:F→Ef : \mathcal{F} \to \mathcal{E}, where H=f∗ΩFH = f_\ast \Omega_{\mathcal{F}}. The logic differs from non-modal higher-order logic in that the principles of functional and propositional extensionality are no longer valid but may be replaced by modalized versions. The usual Kripke, neighborhood, and sheaf semantics for propositional and first-order modal logic are subsumed by this notion

    Lewis meets Brouwer: constructive strict implication

    Full text link
    C. I. Lewis invented modern modal logic as a theory of "strict implication". Over the classical propositional calculus one can as well work with the unary box connective. Intuitionistically, however, the strict implication has greater expressive power than the box and allows to make distinctions invisible in the ordinary syntax. In particular, the logic determined by the most popular semantics of intuitionistic K becomes a proper extension of the minimal normal logic of the binary connective. Even an extension of this minimal logic with the "strength" axiom, classically near-trivial, preserves the distinction between the binary and the unary setting. In fact, this distinction and the strong constructive strict implication itself has been also discovered by the functional programming community in their study of "arrows" as contrasted with "idioms". Our particular focus is on arithmetical interpretations of the intuitionistic strict implication in terms of preservativity in extensions of Heyting's Arithmetic.Comment: Our invited contribution to the collection "L.E.J. Brouwer, 50 years later

    Kripke Semantics for a Logical Framework

    Get PDF
    We present a semantics (using Kripke lambda models) for a logical framework (minimal implicational predicate logic with quantification over all higher types). We apply the semantics to obtain straightforward adequacy proofs for encodings of logics in the framework. 1 Introduction There has been much recent interest in the development and use of logical frameworks. A logical framework is a formal system within which many different logics can be easily represented. It is hoped that such frameworks will facilitate the rapid development of proof assistants for the wide variety of different logics used in computer science and other fields. In this paper we give a semantic analysis (using Kripke lambda models) of the use of minimal implicational predicate logic (with quantification over all higher types) as a logical framework. We choose this framework because it is relatively straightforward to give it a useful semantics. The use of such a logic as a framework is not new. Similar logics ha..
    • …
    corecore