104 research outputs found

    Artificial Evolution of Arbitrary Self-Replicating Cellular Automata

    Get PDF
    Since John von Neumann's seminal work on developing cellular automata models of self-replication, there have been numerous computational studies that have sought to create self-replicating structures or "machines". Cellular automata (CA) has been the most widely used method in these studies, with manual designs yielding a number of specific self-replicating structures. However, it has been found to be very difficult, in general, to design local state-transition rules that, when they operate concurrently in each cell of the cellular space, produce a desired global behavior such as self-replication. This has greatly limited the number of different self-replicating structures designed and studied to date. In this dissertation, I explore the feasibility of overcoming this difficulty by using genetic programming (GP) to evolve novel CA self-replication models. I first formulate an approach to representing structures and rules in cellular automata spaces that is amenable to manipulation by the genetic operations used in GP. Then, using this representation, I demonstrate that it is possible to create a "replicator factory" that provides an unprecedented ability to automatically generate a whole class of new self-replicating structures and that allows one to systematically investigate the properties of replicating structures as one varies the initial configuration, its size, shape, symmetry, and allowable states. This approach is then extended to incorporate multi-objective fitness criteria, resulting in production of diversified replicators. For example, this allows generation of target structures whose complexity greatly exceeds that of the seed structure itself. Finally, the extended multi-objective replicator factory is further generalized into a structure/rule co-evolution model, such that replicators with unspecified seed structures can also be concurrently evolved, resulting in different structure/rule combinations and having the capability of not only replicating but also carrying out a secondary pre-specified task with different strategies. I conclude that GP provides a powerful method for creating CA models of self-replication

    Nonequilibrium Critical Phenomena and Phase Transitions into Absorbing States

    Full text link
    This review addresses recent developments in nonequilibrium statistical physics. Focusing on phase transitions from fluctuating phases into absorbing states, the universality class of directed percolation is investigated in detail. The survey gives a general introduction to various lattice models of directed percolation and studies their scaling properties, field-theoretic aspects, numerical techniques, as well as possible experimental realizations. In addition, several examples of absorbing-state transitions which do not belong to the directed percolation universality class will be discussed. As a closely related technique, we investigate the concept of damage spreading. It is shown that this technique is ambiguous to some extent, making it impossible to define chaotic and regular phases in stochastic nonequilibrium systems. Finally, we discuss various classes of depinning transitions in models for interface growth which are related to phase transitions into absorbing states.Comment: Review article, revised version, LaTeX, 153 pages, 63 encapsulated postscript figure

    Chance and Necessity in Evolution: Lessons from RNA

    Full text link
    The relationship between sequences and secondary structures or shapes in RNA exhibits robust statistical properties summarized by three notions: (1) the notion of a typical shape (that among all sequences of fixed length certain shapes are realized much more frequently than others), (2) the notion of shape space covering (that all typical shapes are realized in a small neighborhood of any random sequence), and (3) the notion of a neutral network (that sequences folding into the same typical shape form networks that percolate through sequence space). Neutral networks loosen the requirements on the mutation rate for selection to remain effective. The original (genotypic) error threshold has to be reformulated in terms of a phenotypic error threshold. With regard to adaptation, neutrality has two seemingly contradictory effects: It acts as a buffer against mutations ensuring that a phenotype is preserved. Yet it is deeply enabling, because it permits evolutionary change to occur by allowing the sequence context to vary silently until a single point mutation can become phenotypically consequential. Neutrality also influences predictability of adaptive trajectories in seemingly contradictory ways. On the one hand it increases the uncertainty of their genotypic trace. At the same time neutrality structures the access from one shape to another, thereby inducing a topology among RNA shapes which permits a distinction between continuous and discontinuous shape transformations. To the extent that adaptive trajectories must undergo such transformations, their phenotypic trace becomes more predictable.Comment: 37 pages, 14 figures; 1998 CNLS conference; high quality figures at http://www.santafe.edu/~walte

    Modelling Early Transitions Toward Autonomous Protocells

    Get PDF
    This thesis broadly concerns the origins of life problem, pursuing a joint approach that combines general philosophical/conceptual reflection on the problem along with more detailed and formal scientific modelling work oriented in the conceptual perspective developed. The central subject matter addressed is the emergence and maintenance of compartmentalised chemistries as precursors of more complex systems with a proper cellular organization. Whereas an evolutionary conception of life dominates prebiotic chemistry research and overflows into the protocells field, this thesis defends that the 'autonomous systems perspective' of living phenomena is a suitable - arguably the most suitable - conceptual framework to serve as a backdrop for protocell research. The autonomy approach allows a careful and thorough reformulation of the origins of cellular life problem as the problem of how integrated autopoietic chemical organisation, present in all full-fledged cells, originated and developed from more simple far-from-equilibrium chemical aggregate systems.Comment: 205 Pages, 27 Figures, PhD Thesis Defended Feb 201

    Complexity, Emergent Systems and Complex Biological Systems:\ud Complex Systems Theory and Biodynamics. [Edited book by I.C. Baianu, with listed contributors (2011)]

    Get PDF
    An overview is presented of System dynamics, the study of the behaviour of complex systems, Dynamical system in mathematics Dynamic programming in computer science and control theory, Complex systems biology, Neurodynamics and Psychodynamics.\u

    Law and Policy for the Quantum Age

    Get PDF
    Law and Policy for the Quantum Age is for readers interested in the political and business strategies underlying quantum sensing, computing, and communication. This work explains how these quantum technologies work, future national defense and legal landscapes for nations interested in strategic advantage, and paths to profit for companies

    French Roadmap for complex Systems 2008-2009

    Get PDF
    This second issue of the French Complex Systems Roadmap is the outcome of the Entretiens de Cargese 2008, an interdisciplinary brainstorming session organized over one week in 2008, jointly by RNSC, ISC-PIF and IXXI. It capitalizes on the first roadmap and gathers contributions of more than 70 scientists from major French institutions. The aim of this roadmap is to foster the coordination of the complex systems community on focused topics and questions, as well as to present contributions and challenges in the complex systems sciences and complexity science to the public, political and industrial spheres

    Towards a Boolean network-based Computational Model for Cell Differentiation and its applications to Robotics

    Get PDF
    Living organisms are the ultimate product of a series of complex processes that take place within—and among—biological cells. Most of these processes, such as cell differentiation, are currently poorly understood. Cell differentiation is the process by which cells progressively specialise. Being a fundamental process within cells, its dysregulations have dramatic implications in biological organisms ranging from developmental issues to cancer formation. The thesis objective is to contribute to the progress in the understanding of cell differentiation and explore the applications of its properties for designing artificial systems. The proposed approach, which relies on Boolean networks based modelling and on the theory of dynamical systems, aims at investigating the general mechanisms underlying cell differentiation. The results obtained contribute to taking a further step towards the formulation of a general theoretical framework—so far missing—for cellular differentiation. We conducted an in-depth analysis of the impact of self-loops in random Boolean networks ensembles. We proposed a new model of differentiation driven by a simplified bio-inspired methylation mechanism in Boolean models of genetic regulatory networks. On the artificial side, by introducing the conceptual metaphor of the “attractor landscape” and related proofs of concept that support its potential, we paved the way for a new research direction in robotics called behavioural differentiation robotics: a branch of robotics dealing with the designing of robots capable of expressing different behaviours in a way similar to that of biological cells that undergo differentiation. The implications of the results achieved may have beneficial effects on medical research. Indeed, the proposed approach can foster new questions, experiments and in turn, models that hopefully in the next future will take us to cure differentiation-related diseases such as cancer. Our work may also contribute to address questions concerning the evolution of complex behaviours and to help design robust and adaptive robots

    Discrete coarse-grained modelling of adsorption and diffusion in host-guest systems

    Get PDF
    Representing molecular systems above the microscale is a challenging task. The widely-used atomistic methods are very accurate, but at the same time, very limited in terms of efficiency. In this thesis, I report different methodologies to represent adsorption and diffusion occurring in host-guest systems on larger scales, through discrete models. First, I report a data-driven approach for the definition of molecular states based on local atomistic patterns. Second, I propose another method that makes use of the occupancies i.e. local amounts of guest species. Molecular systems are mapped into lattice models equipped with coarse-grained thermodynamics and a local operator, which represents the dynamics. These methods are validated in different ways on several molecular systems, and provide an accurate reproduction of the reference atomistic properties. Moreover, they unveiled interesting physicochemical insights while being strikingly more efficient than their atomistic counterpart
    • …
    corecore