10,669 research outputs found

    MOSAIC: A Model for Technologically Enhanced Educational Linguistics

    Get PDF

    A novel algorithm for dynamic student profile adaptation based on learning styles

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.E-learning recommendation systems are used to enhance student performance and knowledge by providing tailor- made services based on the students’ preferences and learning styles, which are typically stored in student profiles. For such systems to remain effective, the profiles need to be able to adapt and reflect the students’ changing behaviour. In this paper, we introduce new algorithms that are designed to track student learning behaviour patterns, capture their learning styles, and maintain dynamic student profiles within a recommendation system (RS). This paper also proposes a new method to extract features that characterise student behaviour to identify students’ learning styles with respect to the Felder-Silverman learning style model (FSLSM). In order to test the efficiency of the proposed algorithm, we present a series of experiments that use a dataset of real students to demonstrate how our proposed algorithm can effectively model a dynamic student profile and adapt to different student learning behaviour. The results revealed that the students could effectively increase their learning efficiency and quality for the courses when the learning styles are identified, and proper recommendations are made by using our method

    Robust Modeling of Epistemic Mental States

    Full text link
    This work identifies and advances some research challenges in the analysis of facial features and their temporal dynamics with epistemic mental states in dyadic conversations. Epistemic states are: Agreement, Concentration, Thoughtful, Certain, and Interest. In this paper, we perform a number of statistical analyses and simulations to identify the relationship between facial features and epistemic states. Non-linear relations are found to be more prevalent, while temporal features derived from original facial features have demonstrated a strong correlation with intensity changes. Then, we propose a novel prediction framework that takes facial features and their nonlinear relation scores as input and predict different epistemic states in videos. The prediction of epistemic states is boosted when the classification of emotion changing regions such as rising, falling, or steady-state are incorporated with the temporal features. The proposed predictive models can predict the epistemic states with significantly improved accuracy: correlation coefficient (CoERR) for Agreement is 0.827, for Concentration 0.901, for Thoughtful 0.794, for Certain 0.854, and for Interest 0.913.Comment: Accepted for Publication in Multimedia Tools and Application, Special Issue: Socio-Affective Technologie

    Modeling Student Affective State Patterns during Self-Regulated Learning in Physics Playground

    Get PDF
    This dissertation research focuses on investigating the incidence of student self-regulated learning behavior, and examines patterns in student affective states that accompany such self-regulated behavior. This dissertation leverages prediction models of student affective states in the Physics Playground educational game platform to identify common patterns in student affective states during use of self-regulated learning behavior. In Study 1, prediction models of student affective states are developed in the context of the educational game environment Physics Playground, using affective state observations and computer log data that had already been collected as part of a larger project. The performances of student affective state prediction models generated using a combination of the computer log and observational data are then compared against those of similar prediction models generated using video data collected at the same time. In Study 2, I apply these affective state prediction models to generate predictions of student affective states on a broader set of data collected from students participants playing Physics Playground. In parallel, I define aggregated behavioral features that represent the self-observation and strategic planning components of self-regulated learning. Affective state predictions are then mapped to playground level attempts that contain these self-regulated learning behavioral features, and sequential pattern mining is applied to the affective state predictions to identify the most common patterns in student emotions. Findings from Study 1 demonstrate that both video data and interaction log data can be used to predict student affective states with significant accuracy. Since the video data is a direct measure of student emotions, it shows better performance across most affective states. However, the interaction log data can be collected natively by Physics Playground and is able to be generalized more easily to other learning environments. Findings from Study 2 suggest that self-regulatory behavior is closely associated with sustained periods of engaged concentration and .self-regulated learning behaviors are associated with transitions from negative affective states (confusion, frustration, and boredom) to the positive engaged concentration state. The results of this dissertation project demonstrate the power of measuring student affective states in real time and examining the temporal relationship to self-regulated learning behavior within an unstructured educational game platform. These results thus provide a building block for future research on the real-time assessment of student emotions and its relationship with self-regulated learning behaviors, particularly within online student-centered and self-directed learning contexts

    Developing Student Model for Intelligent Tutoring System

    Get PDF
    The effectiveness of an e-learning environment mainly encompasses on how efficiently the tutor presents the learning content to the candidate based on their learning capability. It is therefore inevitable for the teaching community to understand the learning style of their students and to cater for the needs of their students. One such system that can cater to the needs of the students is the Intelligent Tutoring System (ITS). To overcome the challenges faced by the teachers and to cater to the needs of their students, e-learning experts in recent times have focused in Intelligent Tutoring System (ITS). There is sufficient literature that suggested that meaningful, constructive and adaptive feedback is the essential feature of ITSs, and it is such feedback that helps students achieve strong learning gains. At the same time, in an ITS, it is the student model that plays a main role in planning the training path, supplying feedback information to the pedagogical module of the system. Added to it, the student model is the preliminary component, which stores the information to the specific individual learner. In this study, Multiple-choice questions (MCQs) was administered to capture the student ability with respect to three levels of difficulty, namely, low, medium and high in Physics domain to train the neural network. Further, neural network and psychometric analysis were used for understanding the student characteristic and determining the student’s classification with respect to their ability. Thus, this study focused on developing a student model by using the Multiple-Choice Questions (MCQ) for integrating it with an ITS by applying the neural network and psychometric analysis. The findings of this research showed that even though the linear regression between real test scores and that of the Final exam scores were marginally weak (37%), still the success of the student classification to the extent of 80 percent (79.8%) makes this student model a good fit for clustering students in groups according to their common characteristics. This finding is in line with that of the findings discussed in the literature review of this study. Further, the outcome of this research is most likely to generate a new dimension for cluster based student modelling approaches for an online learning environment that uses aptitude tests (MCQ’s) for learners using ITS. The use of psychometric analysis and neural network for student classification makes this study unique towards the development of a new student model for ITS in supporting online learning. Therefore, the student model developed in this study seems to be a good model fit for all those who wish to infuse aptitude test based student modelling approach in an ITS system for an online learning environment. (Abstract by Author

    PEGASE: A generic and adaptable intelligent system for virtual reality learning environments

    No full text
    International audienceThe context of this research is the creation of human learning environments using virtual reality. We propose the integration of a generic and adaptable intelligent tutoring system (Pegase) into a virtual environment. The aim of this environment is to instruct the learner, and to assist the instructor. The proposed system is created using a multi-agent system. This system emits a set of knowledge (actions carried out by the learner, knowledge about the field, etc.) which Pegase uses to make informed decisions. Our study focuses on the representation of knowledge about the environment, and on the adaptable pedagogical agent providing instructive assistance
    • …
    corecore