3,796 research outputs found

    Duality of Quantum Coherence and Path Distinguishability

    Full text link
    We derive a generalized wave-particle duality relation for arbitrary multipath quantum interference phenomena. Beyond the conventional notion of the wave nature of a quantum system, i.e., the interference fringe visibility, we introduce a quantifier as the normalized quantum coherence, recently defined in the framework of quantum information theory. To witness the particle nature, we quantify the path distinguishability or the which-path information based on unambiguous quantum state discrimination. Then, the Bohr complementarity principle for multipath quantum interference can be stated as a duality relation between the quantum coherence and the path distinguishability. For two-path interference, the quantum coherence is identical to the interference fringe visibility, and the relation reduces to the well-known complementarity relation. The duality relation continues to hold in the case where mixedness is introduced due to possible decoherence effects.Comment: 6 pages, 0 figures, close to the published versio

    Two-sided estimates of minimum-error distinguishability of mixed quantum states via generalized Holevo-Curlander bounds

    Full text link
    We prove a concise factor-of-2 estimate for the failure rate of optimally distinguishing an arbitrary ensemble of mixed quantum states, generalizing work of Holevo [Theor. Probab. Appl. 23, 411 (1978)] and Curlander [Ph.D. Thesis, MIT, 1979]. A modification to the minimal principle of Cocha and Poor [Proceedings of the 6th International Conference on Quantum Communication, Measurement, and Computing (Rinton, Princeton, NJ, 2003)] is used to derive a suboptimal measurement which has an error rate within a factor of 2 of the optimal by construction. This measurement is quadratically weighted and has appeared as the first iterate of a sequence of measurements proposed by Jezek et al. [Phys. Rev. A 65, 060301 (2002)]. Unlike the so-called pretty good measurement, it coincides with Holevo's asymptotically optimal measurement in the case of nonequiprobable pure states. A quadratically weighted version of the measurement bound by Barnum and Knill [J. Math. Phys. 43, 2097 (2002)] is proven. Bounds on the distinguishability of syndromes in the sense of Schumacher and Westmoreland [Phys. Rev. A 56, 131 (1997)] appear as a corollary. An appendix relates our bounds to the trace-Jensen inequality.Comment: It was not realized at the time of publication that the lower bound of Theorem 10 has a simple generalization using matrix monotonicity (See [J. Math. Phys. 50, 062102]). Furthermore, this generalization is a trivial variation of a previously-obtained bound of Ogawa and Nagaoka [IEEE Trans. Inf. Theory 45, 2486-2489 (1999)], which had been overlooked by the autho

    Distinguishability times and asymmetry monotone-based quantum speed limits in the Bloch ball

    Get PDF
    For both unitary and open qubit dynamics, we compare asymmetry monotone-based bounds on the minimal time required for an initial qubit state to evolve to a final qubit state from which it is probabilistically distinguishable with fixed minimal error probability (i.e., the minimal error distinguishability time). For the case of unitary dynamics generated by a time-independent Hamiltonian, we derive a necessary and sufficient condition on two asymmetry monotones that guarantees that an arbitrary state of a two-level quantum system or a separable state of NN two-level quantum systems will unitarily evolve to another state from which it can be distinguished with a fixed minimal error probability δ[0,1/2]\delta \in [0,1/2]. This condition is used to order the set of qubit states based on their distinguishability time, and to derive an optimal release time for driven two-level systems such as those that occur, e.g., in the Landau-Zener problem. For the case of non-unitary dynamics, we compare three lower bounds to the distinguishability time, including a new type of lower bound which is formulated in terms of the asymmetry of the uniformly time-twirled initial system-plus-environment state with respect to the generator HSEH_{SE} of the Stinespring isometry corresponding to the dynamics, specifically, in terms of [HSE,ρav(τ)]1\Vert [H_{SE},\rho_{\text{av}}(\tau)]\Vert_{1}, where ρav(τ):=1τ0τdteiHSEtρ0E0EeiHSEt\rho_{\text{av}}(\tau):={1\over \tau}\int_{0}^{\tau}dt\, e^{-iH_{SE}t}\rho \otimes \vert 0\rangle_{E}\langle 0\vert_{E} e^{iH_{SE}t}.Comment: 13 pages, 4 figure

    Thermal breakdown of coherent backscattering: a case study of quantum duality

    Full text link
    We investigate coherent backscattering of light by two harmonically trapped atoms in the light of quantitative quantum duality. Including recoil and Doppler shift close to an optical resonance, we calculate the interference visibility as well as the amount of which-path information, both for zero and finite temperature.Comment: published version with minor changes and an added figur

    A Theoretical Analysis of NDCG Type Ranking Measures

    Full text link
    A central problem in ranking is to design a ranking measure for evaluation of ranking functions. In this paper we study, from a theoretical perspective, the widely used Normalized Discounted Cumulative Gain (NDCG)-type ranking measures. Although there are extensive empirical studies of NDCG, little is known about its theoretical properties. We first show that, whatever the ranking function is, the standard NDCG which adopts a logarithmic discount, converges to 1 as the number of items to rank goes to infinity. On the first sight, this result is very surprising. It seems to imply that NDCG cannot differentiate good and bad ranking functions, contradicting to the empirical success of NDCG in many applications. In order to have a deeper understanding of ranking measures in general, we propose a notion referred to as consistent distinguishability. This notion captures the intuition that a ranking measure should have such a property: For every pair of substantially different ranking functions, the ranking measure can decide which one is better in a consistent manner on almost all datasets. We show that NDCG with logarithmic discount has consistent distinguishability although it converges to the same limit for all ranking functions. We next characterize the set of all feasible discount functions for NDCG according to the concept of consistent distinguishability. Specifically we show that whether NDCG has consistent distinguishability depends on how fast the discount decays, and 1/r is a critical point. We then turn to the cut-off version of NDCG, i.e., NDCG@k. We analyze the distinguishability of NDCG@k for various choices of k and the discount functions. Experimental results on real Web search datasets agree well with the theory.Comment: COLT 201
    corecore