514,280 research outputs found

    Software Product Line Engineering: Future Research Directions

    Get PDF
    The recent trend of switching from single software product development tolines of software products in the software industry has made the software product line concept viable and widely accepted methodology in the future. Some of the potential benefits of this approach include cost reduction, improvement in quality and a decrease in product development time. Many organizations that deal in wide areas of operation, from consumer electronics, telecommunications, and avionics to information technology, are using software product lines practice because it deals with effective utilization ofsoftware assets and provides numerous benefits. Software product line engineering is an inter-disciplinary concept. It spans over the dimensions of business, architecture, process and organization. The business dimension of software product lines deals with managing a strong coordination between product line engineering and the business aspects of product line. Software product line architecture is regarded as one of the crucial piece of entity in software product lines. All the resulting products share thiscommon architecture. The organizational theories, behavior and management play critical role in the process of institutionalization of software product line engineering in an organization. The objective of this chapter is to discuss the state of the art of software product line engineering from the perspectives of business, architecture, organizational management and software engineering process. This work also highlights and discusses the future research directions in this area thus providing an opportunity to researchers and practitioners to better understand the future trends and requirements

    Building the Core Architecture of a Multiagent System Product Line: With an example from a future NASA Mission

    Get PDF
    The field of Software Product Lines (SPL) emphasizes building a core architecture for a family of software products from which concrete products can be derived rapidly. This helps to reduce time-to-market, costs, etc., and can result in improved software quality and safety. Current AOSE methodologies are concerned with developing a single Multiagent System. We propose an initial approach to developing the core architecture of a Multiagent Systems Product Line (MAS-PL), exemplifying our approach with reference to a concept NASA mission based on multiagent technology

    Verification and validation in software product line engineering

    Get PDF
    Verification and Validation (V&V) is currently performed during application development for many systems, especially safety-critical and mission-critical systems. However, the V&V process has been limited to single system development. This dissertation describes the extension of V&V from an individual application system to a product line of systems that are developed within an architecture-based software engineering environment.;In traditional V&V, the system provides the context under which the software will be evaluated, and V&V activities occur during all phases of the system development lifecycle. The transition to a product line approach to development removes the individual system as the context for evaluation, and introduces activities that are not directly related to a specific system. This dissertation presents an approach to V&V of software product lines that uses the domain model and the domain architecture as the context for evaluation, and enables V&V to be performed throughout the modified lifecycle introduced by domain engineering.;This dissertation presents three advances that assist in the adaptation of V&V from single application systems to a product line of systems. The first is a framework for performing V&V that includes the activities of traditional application-level V&V, and extends these activities into domain engineering and into the transition between domain engineering and application engineering. The second is a detailed method to extend the crucial V&V activity of criticality analysis from single system development to a product line of systems. The third advance is an approach to enable formal reasoning, which is needed for high assurance systems, on systems that are based on commercial-off-the-shelf (COTS) products

    Building the Core Architecture of a NASA Multiagent System Product Line

    Get PDF
    The field of Software Product Lines (SPL) emphasizes build- ing a family of software products from which concrete products can be derived rapidly. This helps to reduce time-to-market, costs, etc., and can result in improved software quality and safety. Current Agent-Oriented Software Engineering (AOSE) methodologies are concerned with devel- oping a single Multiagent System. The main contribution of this paper is a proposal to developing the core architecture of a Multiagent Systems Product Line (MAS-PL), exemplifying our approach with reference to a concept NASA mission based on multiagent technology

    Building the Core Architecture of a NASAa Multiagent System Product Line

    Get PDF
    The field of Software Product Lines (SPL) emphasizes building a family of software products from which concrete products can be derived rapidly. This helps to reduce time-to-market, costs, etc., and can result in improved software quality and safety. Current Agent-Oriented Software Engineering (AOSE) methodologies are concerned with developing a single Multiagent System. The main contribution of this paper is a proposal to developing the core architecture of a Multiagent Systems Product Line (MAS-PL), exemplifying our approach with reference to a concept NASA mission based on multiagent technology

    Modeling used for Software Product Line Engineering

    Get PDF
    Software product line is the separation of variant features of all the products which belong to same line. Modeling is the basic foundation of Software Product Line Engineering, that is used for collection of what is similar and what is different between products, but products of same line. Here Line means a set of products those are related and share some commonalities like data structures, software components, some features and architecture etc.In order to managing the variability and commonalties in product line we use modeling in Software product line.So that SPLE is the most powerful approach to which we can use for to increase the efficiency of the software engineering process and we can develop variety of software from a single software product line, that’s why if we implement low design that can ripple through many generated software systems.In this paper I represent the relationship between Orthogonal Variability model and various different qualities attributes affecting them., I will also describe some existing metrics which we use to measure these quality attributes

    A systematic review of quality attributes and measures for software product lines

    Full text link
    [EN] It is widely accepted that software measures provide an appropriate mechanism for understanding, monitoring, controlling, and predicting the quality of software development projects. In software product lines (SPL), quality is even more important than in a single software product since, owing to systematic reuse, a fault or an inadequate design decision could be propagated to several products in the family. Over the last few years, a great number of quality attributes and measures for assessing the quality of SPL have been reported in literature. However, no studies summarizing the current knowledge about them exist. This paper presents a systematic literature review with the objective of identifying and interpreting all the available studies from 1996 to 2010 that present quality attributes and/or measures for SPL. These attributes and measures have been classified using a set of criteria that includes the life cycle phase in which the measures are applied; the corresponding quality characteristics; their support for specific SPL characteristics (e. g., variability, compositionality); the procedure used to validate the measures, etc. We found 165 measures related to 97 different quality attributes. The results of the review indicated that 92% of the measures evaluate attributes that are related to maintainability. In addition, 67% of the measures are used during the design phase of Domain Engineering, and 56% are applied to evaluate the product line architecture. However, only 25% of them have been empirically validated. In conclusion, the results provide a global vision of the state of the research within this area in order to help researchers in detecting weaknesses, directing research efforts, and identifying new research lines. In particular, there is a need for new measures with which to evaluate both the quality of the artifacts produced during the entire SPL life cycle and other quality characteristics. There is also a need for more validation (both theoretical and empirical) of existing measures. In addition, our results may be useful as a reference guide for practitioners to assist them in the selection or the adaptation of existing measures for evaluating their software product lines. © 2011 Springer Science+Business Media, LLC.This research has been funded by the Spanish Ministry of Science and Innovation under the MULTIPLE (Multimodeling Approach For Quality-Aware Software Product Lines) project with ref. TIN2009-13838.Montagud Gregori, S.; Abrahao Gonzales, SM.; Insfrán Pelozo, CE. (2012). A systematic review of quality attributes and measures for software product lines. Software Quality Journal. 20(3-4):425-486. https://doi.org/10.1007/s11219-011-9146-7S425486203-4Abdelmoez, W., Nassar, D. M., Shereschevsky, M., Gradetsky, N., Gunnalan, R., Ammar, H. H., et al. (2004). Error propagation in software architectures. In 10th international symposium on software metrics (METRICS), Chicago, Illinois, USA.Ajila, S. A., & Dumitrescu, R. T. (2007). Experimental use of code delta, code churn, and rate of change to understand software product line evolution. Journal of Systems and Software, 80, 74–91.Aldekoa, G., Trujillo, S., Sagardui, G., & Díaz, O. (2006). Experience measuring maintainability in software product lines. In XV Jornadas de Ingeniería del Software y Bases de Datos (JISBD). Barcelona.Aldekoa, G., Trujillo, S., Sagardui, G., & Díaz, O. (2008). Quantifying maintanibility in feature oriented product lines, Athens, Greece, pp. 243–247.Alves de Oliveira Junior, E., Gimenes, I. M. S., & Maldonado, J. C. (2008). A metric suite to support software product line architecture evaluation. In XXXIV Conferencia Latinamericana de Informática (CLEI), Santa Fé, Argentina, pp. 489–498.Alves, V., Niu, N., Alves, C., & Valença, G. (2010). Requirements engineering for software product lines: A systematic literature review. Information & Software Technology, 52(8), 806–820.Bosch, J. (2000). Design and use of software architectures: Adopting and evolving a product line approach. USA: ACM Press/Addison-Wesley Publishing Co.Briand, L. C., Differing, C. M., & Rombach, D. (1996a). Practical guidelines for measurement-based process improvement. Software Process-Improvement and Practice, 2, 253–280.Briand, L. C., Morasca, S., & Basili, V. R. (1996b). Property based software engineering measurement. IEEE Transactions on Software Eng., 22(1), 68–86.Calero, C., Ruiz, J., & Piattini, M. (2005). Classifying web metrics using the web quality model. Online Information Review, 29(3): 227–248.Chen, L., Ali Babar, M., & Ali, N. (2009). Variability management in software product lines: A systematic review. In 13th international software product lines conferences (SPLC), San Francisco, USA.Clements, P., & Northrop, L. (2002). Software product lines. 2003. Software product lines practices and patterns. Boston, MA: Addison-Wesley.Crnkovic, I., & Larsson, M. (2004). Classification of quality attributes for predictability in component-based systems. Journal of Econometrics, pp. 231–250.Conference Rankings of Computing Research and Education Association of Australasia (CORE). (2010). Available in http://core.edu.au/index.php/categories/conference%20rankings/1 .Davis, A., Dieste, Ó., Hickey, A., Juristo, N., & Moreno, A. M. (2006). Effectiveness of requirements elicitation techniques: Empirical results derived from a systematic review. In 14th IEEE international conference requirements engineering, pp. 179–188.de Souza Filho, E. D., de Oliveira Cavalcanti, R., Neiva, D. F. S., Oliveira, T. H. B., Barachisio Lisboa, L., de Almeida E. S., & de Lemos Meira, S. R. (2008). Evaluating domain design approaches using systematic review. In 2nd European conference on software architecture, Cyprus, pp. 50–65.Ejiogu, L. (1991). Software engineering with formal metrics. QED Publishing.Engström, E., & Runeson, P. (2011). Software product line testing—A systematic mapping study. Information & Software Technology, 53(1), 2–13.Etxeberria, L., Sagarui, G., & Belategi, L. (2008). Quality aware software product line engineering. Journal of the Brazilian Computer Society, 14(1), Campinas Mar.Ganesan, D., Knodel, J., Kolb, R., Haury, U., & Meier, G. (2007). Comparing costs and benefits of different test strategies for a software product line: A study from Testo AG. In 11th international software product line conference, Kyoto, Japan, pp. 74–83, September 2007.Gómez, O., Oktaba, H., Piattini, M., & García, F. (2006). A systematic review measurement in software engineering: State-of-the-art in measures. In First international conference on software and data technologies (ICSOFT), Setúbal, Portugal, pp. 11–14.IEEE standard for a software quality metrics methodology, IEEE Std 1061-1998, 1998.Inoki, M., & Fukazawa, Y. (2007). Software product line evolution method based on Kaizen approach. In 22nd annual ACM symposium on applied computing, Korea.Insfran, E., & Fernandez, A. (2008). A systematic review of usability evaluation in Web development. 2nd international workshop on web usability and accessibility (IWWUA’08), New Zealand, LNCS 5176, Springer, pp. 81–91.ISO/IEC 25010. (2008). Systems and software engineering. Systems and software Quality Requirements and Evaluation (SQuaRE). System and software quality models.ISO/IEC 9126. (2000). Software engineering. Product Quality.Johansson, E., & Höst, R. (2002). Tracking degradation in software product lines through measurement of design rule violations. In 14th International conference on software engineering and knowledge engineering, Ischia, Italy, pp. 249–254.Journal Citation Reports of Thomson Reuters. (2010). Available in http://thomsonreuters.com/products_services/science/science_products/a-z/journal_citation_reports/ .Khurum, M., & Gorschek, T. (2009). A systematic review of domain analysis solutions for product lines. The Journal of Systems and Software.Kim, T., Ko, I. Y., Kang, S. W., & Lee, D. H. (2008). Extending ATAM to assess product line architecture. In 8th IEEE international conference on computer and information technology, pp. 790–797.Kitchenham, B. (2007). Guidelines for performing systematic literature reviews in software engineering. Version 2.3, EBSE Technical Report, Keele University, UK.Kitchenham, B., Pfleeger, S., & Fenton, N. (1995). Towards a framework for software measurement validation. IEEE Transactions on Software Engineering, 21(12).Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174.Mendes, E. (2005). A systematic review of Web engineering research. International symposium on empirical software engineering. Noosa Heads, Australia.Meyer, M. H., & Dalal, D. (2002). Managing platform architectures and manufacturing processes for non assembled products. Journal of Product Innovation Management, 19(4), 277–293.Montagud, S., & Abrahão, S. (2009). Gathering Current knowledge about quality evaluation in software product lines. In 13th international software product lines conferences (SPLC), San Francisco, USA.Montagud, S., & Abrahão, S. (2009). A SQuaRE-bassed quality evaluation method for software product lines. Master’s thesis, December 2009 (in Spanish).Needham, D., & Jones, S. (2006). A software fault tree metric. In 22nd international conference on software maintenance (ICSM), Philadelphia, Pennsylvania, USA.Niemelä, E., & Immonen, A. (2007). Capturing quality requirements of product family architecture. Information and Software Technology, 49(11–12), 1107–1120.Odia, O. E. (2007). Testing in software product lines. Master Thesis Software Engineering of School of Engineering, Bleking Institute of Technology. Thesis no. MSE-2007:16, Sweden.Olumofin, F. G., & Mišić, V. B. (2007). A holistic architecture assessment method for software product lines. Information and Software Technology, 49, 309–323.Pérez Lamancha, B., Polo Usaola, M., & Piattini Velthius, M. (2009). Software product line testing—a systematic review. ICSOFT, (1), 23–30.Poels, G., & Dedene, G. (2000). Distance-based software measurement: necessary and sufficient properties for software measures. Information and Software Technology, 42(I), 35–46.Prehofer, C., van Gurp, J., & Bosch, J. (2008). Compositionality in software platforms. In Emerging methods, technologies and process management in software engineering. Wiley.Rahman, A. (2004). Metrics for the structural assessment of product line architecture. Master Thesis on Software Engineering, Thesis no. MSE-2004:24. School of Engineering, Blekinge Institute of Technology, Sweden.Sethi, K., Cai, Y., Wong, S., Garcia, A., & Sant’Anna, C. (2009). From retrospect to prospect: Assessing modularity and stability from software architecture. Joint working IEEE/IFIP conference on software architecture, 2009 & European conference on software architecture. WICSA/ECSA.Shaik, I., Abdelmoez, W,. Gunnalan, R., Shereshevsky, M., Zeid, A., Ammar, H. H., et al. (2005). Change propagation for assessing design quality of software architectures. 5th working IEEE/IFIP conference on software architecture (WICSA’05).Siegmund, N., Rosenmüller, M., Kuhlemann, M., Kästner, C., & Saake, G. (2008). Measuring non-functional properties in software product lines for product derivation. In 15th Asia-Pacific software engineering conference, Beijing, China.Sun Her, J., Hyeok Kim, J., Hun Oh, S., Yul Rhew, S., & Dong Kim, S. (2007). A framework for evaluating reusability of core asset in product line engineering. Information and Software Technology, 49, 740–760.Svahnberg, M., & Bosch, J. (2000). Evolution in software product lines. In 3rd international workshop on software architectures for products families (IWSAPF-3). Las Palmas de Gran Canaria.Van der Hoek, A., Dincel, E., & Medidović, N. (2003). Using services utilization metrics to assess the structure of product line architectures. In 9th international software metrics symposium (METRICS), Sydney, Australia.Van der Linden, F., Schmid, K., & Rommes, E. (2007). Software product lines in action. Springer.Whitmire, S. (1997). Object oriented design measurement. John Wiley & Sons.Wnuk, K., Regnell, B., & Karlsson, L. (2009). What happened to our features? Visualization and understanding of scope change dynamics in a large-scale industrial setting. In 17th IEEE international requirements engineering conference.Yoshimura, K., Ganesan, D., & Muthig, D. (2006). Assessing merge potential of existing engine control systems into a product line. In International workshop on software engineering for automative systems, Shangai, China, pp. 61–67.Zhang, T., Deng, L., Wu, J., Zhou, Q., & Ma, C. (2008). Some metrics for accessing quality of product line architecture. In International conference on computer science and software engineering (CSSE), Wuhan, China, pp. 500–503

    The contribution of architecture description languages to the evaluation of software architectures

    Get PDF
    Identifying limitations and mistakes within software architectures at the design stage is often cost- efficient and reduces the overall system’s development and marketing time. A number of techniques have emerged over recent years, for assessing both single-systems, and product-line architectures. These techniques do not assume any particular format or language for the description of the architecture. Often however, they do require the ability to extract a range of information from the architecture description. In this research, we looked at the relationships between the features that might be provided by a formal architecture description language (ADL), and the information required for architecture assessment purposes. We also designed a set of visual tools for use within the architecture development and assessment process in order to alleviate and aid the human part of the process

    Evolution of component and aspect-based product line architectures

    Get PDF
    Orientador: Cecília Mary Fischer RubiraTese (doutorado) ¿ Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Arquiteturas de linhas de produtos são essenciais para facilitar a evolução das linhas, pois ajudam a lidar com sua complexidade, abstraindo seus detalhes de implementação. A variabilidade arquitetural difere arquiteturas de linhas de produtos de arquiteturas de sistemas únicos. Ela reflete a existência de alternativas de projeto arquitetural e é expressa por meio de um conjunto de pontos de variação e variantes arquiteturais. A variabilidade arquitetural pode dificultar a evolução de arquiteturas de linhas produtos, pois a implementação da variabilidade software pode aumentar a complexidade da arquitetura com a possível adição de elementos e dependências extras. A variabilidade de linhas de produtos é usualmente capturada modelo de características e implementado pela arquitetura de linha de produtos. Entretanto, a implementação de características, pontos de variação e variantes podem estar espalhados por diversos elementos arquiteturais, o que dificulta a sua evolução. Em geral, cenários de evolução de linhas de produto envolvem adição e/ou remoção de características, mudança de uma característica obrigatória para opcional, entre outros. Quando cenários de evolução afetam características cujas implementações estão espalhadas na arquitetura, eles podem causar impacto de mudança em vários elementos arquiteturais. Estudos recentes exploram o uso de aspectos para modularizar a implementação de características em arquiteturas de linhas de produtos. Aspectos são usados para modularizar interesses transversais que, no contexto de linhas de produtos, são interesses que afetam diversas características. Contudo, esses estudos não consideram (i) arquiteturas componentizadas com interfaces explícitas e (ii) o uso integrado de componentes e aspectos para modularizar a implementação da variabilidade arquitetural. Idealmente aspectos devem ser modelados o mais cedo possível, de preferência, junto com o modelo de características para possibilitar a criação de arquiteturas bem estruturadas com aspectos. Todavia, não existem modelos que integrem o modelo de características e aspectos, nem métodos que consideram aspectos para gerar arquiteturas de linhas produtos a partir do modelo de características. A solução proposta nesta tese envolve inicialmente um estudo comparativo para mostrar a facilidade de evolução de arquiteturas de linhas de produtos propiciada pelo uso integrado de componentes e aspectos. Em seguida, é proposta uma visão estendida do modelo de características que permite representar características transversais. Essa visão, chamada de visão de características orientada a aspectos, é usada para criar arquiteturas de linhas de produtos orientadas a aspectos. Além disso, um modelo arquitetural de componentes é estendido para integrar aspectos para modularizar a variabilidade arquitetural. Por fim, o método FArM, que provê o mapeamento de modelo de características para modelos de arquitetura de linha de produtos, é estendido para considerar características transversais. Foram conduzidos dois estudos empíricos: um para avaliar se o uso integrado de componentes e aspectos facilita ou não a evolução de arquiteturas de linhas de produtos. O outro estudo empírico avalia a modelagem de características transversais e a extensão do método FArM propostos para projetar arquiteturas de linhas de produtos que sejam fáceis de evoluir. Os dois estudos apresentaram resultados promissores indicando que a solução proposta nesta tese facilita a evolução de arquiteturas de linhas de produtosAbstract: Product line architectures are essential to facilitate the evolution of product lines, as they handle their complexity by abstracting implementation details. Architectural variability is what differs product line architectures from single system architectures. It reflects the existence of alternative design options and it is expressed by a set of architectural variation points and variants. Architectural variability can hinder product line architecture evolution because the implementation of software variability can increase architecture complexity by possibly adding extra elements and dependencies. Product line variability is usually captured in the feature model and it is implemented by product line architectures. However, the implementation of features, variation points, and variants may be scattered over architectural elements, which can hinder its evolution. In general, product line evolution scenarios involve feature addition/removal, changing a mandatory feature to an optional feature, and so forth. When evolution scenarios affect features whose implementations are scattered over architecture, they can cause a great change impact on several architectural elements. Recent studies have explored the use of aspects to modularize feature implementation in product line architectures. Aspects can modularize crosscutting concerns, which, in the context of product lines, are concerns that affect several features. Nevertheless, these studies do not consider (i) componentized architectures with explicit interfaces, and (ii) the integration of aspects and components to modularize the implementation of architectural variability. Ideally, aspects should be modeled as soon as possible, preferably, together with the feature model in order to enable the design of well structured product line architectures with aspects. However, there are neither models which integrate features and aspects, nor methods that considers aspects to design product line architectures from the feature model. The solution proposed in this thesis involves a comparative study that presents the support for product line architecture evolution provided by the integration of components and aspects. Then, it is proposed an extended view of the feature model which enables to represent crosscutting features. This view, called aspect-oriented feature view, is used to design product line architectures with aspects. Lastly, the FArM method, which provides guidelines to map from the feature model to the product line architecture model, is extended to consider crosscutting features. Two empirical studies were conducted: one to assess whether the integration of components and aspects facilitates product line architecture evolution. The other empirical study evaluates whether the crosscutting feature modeling and the FArM method extension proposed supports the design of evolvable product line architectures. Both studies presented promising results which indicate that the solution proposed in this thesis facilitates product line architecture evolutionDoutoradoCiência da ComputaçãoDoutor em Ciência da Computaçã
    • …
    corecore