4,583 research outputs found

    From a Link Semantic to Semantic Links - Building Context in Educational Hypermedia

    Full text link
    Modularization and granulation are key concepts in educational content management, whereas teaching, learning and understanding require a discourse within thematic contexts. Even though hyperlinks and semantically typed references provide the context building blocks of hypermedia systems, elaborate concepts to derive, manage and propagate such relations between content objects are not around at present. Based on Semantic Web standards, this paper makes several contributions to content enrichment. Work starts from harvesting multimedia annotations in class-room recordings, and proceeds to deriving a dense educational semantic net between eLearning Objects decorated with extended LOM relations. Special focus is drawn on the processing of recorded speech and on an Ontological Evaluation Layer that autonomously derives meaningful inter-object relations. Further on, a semantic representation of hyperlinks is developed and elaborated to the concept of semantic link contexts, an approach to manage a coherent rhetoric of linking. These solutions have been implemented in the Hypermedia Learning Objects System (hylOs), our eLearning content management system. hylOs is built upon the more general Media Information Repository (MIR) and the MIR adaptive context linking environment (MIRaCLE), its linking extension. MIR is an open system supporting the standards XML and JNDI. hylOs benefits from configurable information structures, sophisticated access logic and high-level authoring tools like the WYSIWYG XML editor and its Instructional Designer.Comment: Summary of several conference article

    Hypermedia Learning Objects System - On the Way to a Semantic Educational Web

    Full text link
    While eLearning systems become more and more popular in daily education, available applications lack opportunities to structure, annotate and manage their contents in a high-level fashion. General efforts to improve these deficits are taken by initiatives to define rich meta data sets and a semanticWeb layer. In the present paper we introduce Hylos, an online learning system. Hylos is based on a cellular eLearning Object (ELO) information model encapsulating meta data conforming to the LOM standard. Content management is provisioned on this semantic meta data level and allows for variable, dynamically adaptable access structures. Context aware multifunctional links permit a systematic navigation depending on the learners and didactic needs, thereby exploring the capabilities of the semantic web. Hylos is built upon the more general Multimedia Information Repository (MIR) and the MIR adaptive context linking environment (MIRaCLE), its linking extension. MIR is an open system supporting the standards XML, Corba and JNDI. Hylos benefits from manageable information structures, sophisticated access logic and high-level authoring tools like the ELO editor responsible for the semi-manual creation of meta data and WYSIWYG like content editing.Comment: 11 pages, 7 figure

    Adaptive hypermedia for education and training

    Get PDF
    Adaptive hypermedia (AH) is an alternative to the traditional, one-size-fits-all approach in the development of hypermedia systems. AH systems build a model of the goals, preferences, and knowledge of each individual user; this model is used throughout the interaction with the user to adapt to the needs of that particular user (Brusilovsky, 1996b). For example, a student in an adaptive educational hypermedia system will be given a presentation that is adapted specifically to his or her knowledge of the subject (De Bra & Calvi, 1998; Hothi, Hall, & Sly, 2000) as well as a suggested set of the most relevant links to proceed further (Brusilovsky, Eklund, & Schwarz, 1998; Kavcic, 2004). An adaptive electronic encyclopedia will personalize the content of an article to augment the user's existing knowledge and interests (Bontcheva & Wilks, 2005; Milosavljevic, 1997). A museum guide will adapt the presentation about every visited object to the user's individual path through the museum (Oberlander et al., 1998; Stock et al., 2007). Adaptive hypermedia belongs to the class of user-adaptive systems (Schneider-Hufschmidt, KĂŒhme, & Malinowski, 1993). A distinctive feature of an adaptive system is an explicit user model that represents user knowledge, goals, and interests, as well as other features that enable the system to adapt to different users with their own specific set of goals. An adaptive system collects data for the user model from various sources that can include implicitly observing user interaction and explicitly requesting direct input from the user. The user model is applied to provide an adaptation effect, that is, tailor interaction to different users in the same context. In different kinds of adaptive systems, adaptation effects could vary greatly. In AH systems, it is limited to three major adaptation technologies: adaptive content selection, adaptive navigation support, and adaptive presentation. The first of these three technologies comes from the fields of adaptive information retrieval (IR) and intelligent tutoring systems (ITS). When the user searches for information, the system adaptively selects and prioritizes the most relevant items (Brajnik, Guida, & Tasso, 1987; Brusilovsky, 1992b)

    A schema-based P2P network to enable publish-subscribe for multimedia content in open hypermedia systems

    No full text
    Open Hypermedia Systems (OHS) aim to provide efficient dissemination, adaptation and integration of hyperlinked multimedia resources. Content available in Peer-to-Peer (P2P) networks could add significant value to OHS provided that challenges for efficient discovery and prompt delivery of rich and up-to-date content are successfully addressed. This paper proposes an architecture that enables the operation of OHS over a P2P overlay network of OHS servers based on semantic annotation of (a) peer OHS servers and of (b) multimedia resources that can be obtained through the link services of the OHS. The architecture provides efficient resource discovery. Semantic query-based subscriptions over this P2P network can enable access to up-to-date content, while caching at certain peers enables prompt delivery of multimedia content. Advanced query resolution techniques are employed to match different parts of subscription queries (subqueries). These subscriptions can be shared among different interested peers, thus increasing the efficiency of multimedia content dissemination

    Opening up Magpie via semantic services

    Get PDF
    Magpie is a suite of tools supporting a ‘zero-cost’ approach to semantic web browsing: it avoids the need for manual annotation by automatically associating an ontology-based semantic layer to web resources. An important aspect of Magpie, which differentiates it from superficially similar hypermedia systems, is that the association between items on a web page and semantic concepts is not merely a mechanism for dynamic linking, but it is the enabling condition for locating services and making them available to a user. These services can be manually activated by a user (pull services), or opportunistically triggered when the appropriate web entities are encountered during a browsing session (push services). In this paper we analyze Magpie from the perspective of building semantic web applications and we note that earlier implementations did not fulfill the criterion of “open as to services”, which is a key aspect of the emerging semantic web. For this reason, in the past twelve months we have carried out a radical redesign of Magpie, resulting in a novel architecture, which is open both with respect to ontologies and semantic web services. This new architecture goes beyond the idea of merely providing support for semantic web browsing and can be seen as a software framework for designing and implementing semantic web applications

    Designing a training tool for imaging mental models

    Get PDF
    The training process can be conceptualized as the student acquiring an evolutionary sequence of classification-problem solving mental models. For example a physician learns (1) classification systems for patient symptoms, diagnostic procedures, diseases, and therapeutic interventions and (2) interrelationships among these classifications (e.g., how to use diagnostic procedures to collect data about a patient's symptoms in order to identify the disease so that therapeutic measures can be taken. This project developed functional specifications for a computer-based tool, Mental Link, that allows the evaluative imaging of such mental models. The fundamental design approach underlying this representational medium is traversal of virtual cognition space. Typically intangible cognitive entities and links among them are visible as a three-dimensional web that represents a knowledge structure. The tool has a high degree of flexibility and customizability to allow extension to other types of uses, such a front-end to an intelligent tutoring system, knowledge base, hypermedia system, or semantic network

    Collaboration in the Semantic Grid: a Basis for e-Learning

    Get PDF
    The CoAKTinG project aims to advance the state of the art in collaborative mediated spaces for the Semantic Grid. This paper presents an overview of the hypertext and knowledge based tools which have been deployed to augment existing collaborative environments, and the ontology which is used to exchange structure, promote enhanced process tracking, and aid navigation of resources before, after, and while a collaboration occurs. While the primary focus of the project has been supporting e-Science, this paper also explores the similarities and application of CoAKTinG technologies as part of a human-centred design approach to e-Learning

    Semantic web technology to support learning about the semantic web

    Get PDF
    This paper describes ASPL, an Advanced Semantic Platform for Learning, designed using the Magpie framework with an aim to support students learning about the Semantic Web research area. We describe the evolution of ASPL and illustrate how we used the results from a formal evaluation of the initial system to re-design the user functionalities. The second version of ASPL semantically interprets the results provided by a non-semantic web mining tool and uses them to support various forms of semantics-assisted exploration, based on pedagogical strategies such as performing later reasoning steps and problem space filtering
    • 

    corecore